Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Aromatic Thermosetting Copolyester for Schottky Diode Applications in a Wide Temperature Range

  • 59 Accesses

Abstract

The aromatic thermosetting copolyester (ATSP) was deposited on p-Si substrates by the spin coating method, and the thickness of thin film layer was about 50 nm. It was employed to fabricate metal-polymer-semiconductor (MPS) heterojunctions as interfacial layers between metal contact and p type Si. The morphological properties of the Al/ATSP/p-Si heterojunctions were investigated by Scanning Electron Microscope (SEM) and an Atomic Force Microscope. The electrical characteristics of the heterojunctions were analyzed within a wide temperature range between 100 K and 500 K and frequency range. The current–voltage–temperature (IVT) characteristics of the MPS heterojunctions were explained by the Thermionic Emission (TE) theory and Norde function. Critical electrical parameters including leakage current (I0), barrier height (Φb) and ideality factor (n) and series resistance (Rs) were calculated by I–V–T characteristics in dark conditions. The value of n and Φb was obtained as 2.56 and 0.78 eV at 300 K. The n and Φb values were obtained as strong function of the temperature depending on barrier inhomogeneity. The temperature dependent rectification ratios of the Al/ATSP/p-Si heterojunctions were calculated and discussed in the details considering effective operating temperatures. The capacitance–voltage (CV) and conductance–voltage (GV) characteristics were measured at 300 K. To obtain Fermi energy (EF), donor concentration (Na), maximum electric field (Em), Φb and interface states (Nss), were performed on the bases of voltage and frequency at 300 K. From the electrical analysis results, it is proposed that the MPS device can be employed in electronic devices at low and high temperatures.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R.T. Tung, Appl. Phys. Lett. 58, 2821 (1991).

  2. 2.

    J. Osvald and E. Burian, Solid-State Electron. 42, 191 (1998).

  3. 3.

    O.S. Cifci, M. Bakir, J.L. Meyer, and A. Kocyigit, Mater. Sci. Semicond. Process. 74, 175 (2018).

  4. 4.

    L.W. Lim, F. Aziz, F.F. Muhammad, A. Supangat, and K. Sulaiman, Synth. Met. 221, 169 (2016).

  5. 5.

    C. Tozlu and A. Mutlu, Synth. Met. 211, 99 (2016).

  6. 6.

    F. Yakuphanoglu and B.F. Şenkal, J. Phys. Chem. C 111, 1840 (2007).

  7. 7.

    H. Wang, J.-H. Hsu, G. Yang, and C. Yu, Adv. Mater. 28, 9545 (2016).

  8. 8.

    P. Ghorai, A. Dey, P. Brandão, J. Ortega-Castro, A. Bauza, A. Frontera, P.P. Ray, and A. Saha, Dalton Trans. 46, 13531 (2017).

  9. 9.

    K. S. Kang, Y. Chen, H. K. Lim, K. Y. Cho, K. J. Han, and J. Kim, Thin Solid Films (2009).

  10. 10.

    Ö. Tüzün Özmen and E. Yağlioğlu, Mater. Sci. Semicond. Process.26, 448 (2014).

  11. 11.

    C.H. Chang, C.J. Hsu, and C.C. Wu, Org. Electron. Phys. Mater. Appl. 48, 35 (2017).

  12. 12.

    A. Valletta, M. Rapisarda, S. Calvi, G. Fortunato, M. Frasca, G. Maira, A. Ciccazzo, and L. Mariucci, Org. Electron. Phys. Mater. Appl. 41, 345 (2017).

  13. 13.

    Y. Cho, P.J. Jeon, J.S. Kim, and S. Im, Org. Electron. Phys. Mater. Appl. 40, 24 (2017).

  14. 14.

    A. Sutrisno, R. Soc. Chem. 8, 4946 (2018).

  15. 15.

    D. Frich, K. Goranov, L. Schneggenburger, and J. Economy, Macromolecules 9297, 7734 (1996).

  16. 16.

    A. Kocyigit, M. Bakir, O.S. Cifci, B. Enders, I. Jasiuk, and M.H. Nayfeh, Eur. Polym. J. 103, 351 (2018).

  17. 17.

    M. Bakir, J.L. Meyer, J. Economy, and I. Jasiuk, Polymer 123, 311 (2017).

  18. 18.

    M.E. Aydin, F. Yakuphanoglu, J.H. Eom, and D.H. Hwang, Phys. B 387, 239 (2007).

  19. 19.

    Simon M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1979).

  20. 20.

    W. R. Rhoderick EH, MetalSemiconductor contacts, 2nd ed. (Oxford, Caledron, 1998).

  21. 21.

    Ş. KarataŞ, Ş. Altindal, A. Türüt, and A. Özmen, Appl. Surf. Sci. 217, 250 (2003).

  22. 22.

    M. Cakar, Y. Organer, and A. Turut, Synth. Met. 126, 213 (2002).

  23. 23.

    V.R. Reddy, M.S.P. Reddy, A.A. Kumar, and C.J. Choi, Thin Solid Films 520, 5715 (2012).

  24. 24.

    I.S. Yahia, A.A.M. Farag, F. Yakuphanoglu, and W.A. Farooq, Synth. Met. 161, 881 (2011).

  25. 25.

    O. ÇiÇek, H. Uslu Tecimer, S. O. Tan, H. Tecimer, I. Orak, and S. Altındal, Compos. Part B Eng.113, 14 (2017).

  26. 26.

    A. B. Selçuk, S. Bilge Ocak, F. G. Aras, and E. Oz Orhan, J. Electron. Mater.43, 3263 (2014).

  27. 27.

    T. Tunç and M. Gökçen, J. Compos. Mater. 46, 2843 (2012).

  28. 28.

    M. Yıldırım and A. Kocyigit, J. Alloy. Compd. 768, 1064 (2018).

  29. 29.

    O.S. Cifci, A. Kocyigit, and P. Sun, Superlattices Microstruct. 120, 492 (2018).

  30. 30.

    L.D. Rao and V.R. Reddy, AIP Conf. Proc. 120020, 120020 (2016).

  31. 31.

    L.W. Lim, F. Aziz, F.F. Muhammad, A. Supangat, and K. Sulaiman, Synth. Met. 221, 169 (2016).

  32. 32.

    M. Das, J. Datta, A. Dey, S. Halder, S. Sil, and P. Pratim, Mater. Lett. 204, 184 (2017).

  33. 33.

    K. Moraki, S. Bengi, S. Zeyrek, M.M. Bulbul, and S. Altindal, J. Mater. Sci. Mater. Electron. 28, 3987 (2017).

  34. 34.

    I. Jyothi, V. Janardhanam, H. Hong, and C. Choi, Mater. Sci. Semicond. Process. 39, 390 (2015).

  35. 35.

    Ş. KarataŞ, Ş. Altindal, A. Turut, and M. Cakar, Phys. B 392, 43 (2007).

  36. 36.

    V. Rajagopal Reddy, D. Sri Silpa, H.-J. Yun, and C.-J. Choi, Superlattices Microstruct.71, 134 (2014).

  37. 37.

    Ş. Aydoğan, K. Çinar, H. Asil, C. CoŞkun, and A. Türüt, J. Alloy. Compd. 476, 913 (2009).

  38. 38.

    F. Yakuphanoglu, Y. Caglar, M. Caglar, and S. Ilican, Mater. Sci. Semicond. Process. 13, 137 (2010).

  39. 39.

    S. Sharma and C. Periasamy, Supperlattices Microstruct. 73, 12 (2014).

  40. 40.

    A. Guzel, S. Duman, N. Yildirim, and A. Turut, J. Electron. Mater. 45, 2808 (2016).

  41. 41.

    K.E. Bohlin, J. Appl. Phys. 60, 1223 (1986).

  42. 42.

    H. Norde, J. Appl. Phys. 50, 5052 (1979).

  43. 43.

    A. Karabulut, İ. Orak, S. Canlı, N. Yıldırım, and A. Türüt, Phys. B 550, 68 (2018).

  44. 44.

    A.M. Cowley and S.M. Sze, J. Appl. Phys. 36, 3212 (1965).

  45. 45.

    Y. Zhu, Y. Ishimaru, N. Takahashi, and M. Shimizu, IEEE Trans. Electron Devices 45, 2032 (1998).

  46. 46.

    Ş. KarataŞ, N. Yildirim, and A. Türüt, Superlattices Microstruct. 64, 483 (2013).

  47. 47.

    D. Korucu, A. Turut, and R. Turan, Mater. Sci. Semicond. Process. 16, 344 (2013).

  48. 48.

    T. Asar and S. Özçelik, J. Alloy. Compd. 628, 442 (2015).

  49. 49.

    H. Dogan, N. Yıldırım, İ. Orak, S. Elagöz, and A. Turut, Phys. B 457, 48 (2015).

  50. 50.

    H.G. Çetinkaya, Ö. Sevgili, and Ş. Altındal, Phys. B 560, 91 (2019).

  51. 51.

    A. Kocyigit, M. Yıldırım, A. Sarılmaz, and F. Ozel, J. Alloy. Compd. 780, 186 (2019).

  52. 52.

    Ç. Bilkan, Ş. Altındal, and Y. Azizian-Kalandaragh, Phys. B 515, 28 (2017).

  53. 53.

    I. Taşçioglu, M. Soylu, ş. Altindal, A.A. Al-Ghamdi, and F. Yakuphanoglu, J. Alloy. Compd. 541, 462 (2012).

  54. 54.

    E. H. N. J. R. Brews, MOS (Metal Oxide Semiconductors) Physics and Technology by E. H. Nicollian and J. R. Brews (1982)

  55. 55.

    A. Duangrawa, N. Promros, A. Nopparuchikun, P. Onsee, S. Teakchaicum, and P. Sittimart, J. Nanosci. Nanotechnol. 18, 1841 (2017).

Download references

Author information

Correspondence to İkram Orak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Orak, İ., Caldiran, Z., Bakir, M. et al. The Aromatic Thermosetting Copolyester for Schottky Diode Applications in a Wide Temperature Range. Journal of Elec Materi 49, 402–409 (2020). https://doi.org/10.1007/s11664-019-07738-x

Download citation

Keywords

  • Aromatic thermosetting copolyester
  • metal-polymer-semiconductor (MPS)
  • thermionic emission theory
  • Norde function
  • ATSP