Skip to main content

Al2O3-Doped MoO3-TeO2 Glass as Anode Materials for Lithium-Ion Batteries with Long-Term Cycle Life

Abstract

Glass materials have found various applications owing to their low cost, free of grain boundaries and open topological network to accommodate various active species. We have fabricated a ternary glass of Al2O3-MoO3-TeO2 (AlMoTe) and investigated potential applications in lithium-ion batteries (LIBs). we have found that the incorporation of a certain amount of Al2O3 into 40TeO2-60MoO3 (MT-60) glass can lead to a significant enhancement in the cycling performance and specific capacity of LIBs. Specifically, when used as anode for LIBs, the capacity of MT-60 reached 112.5 mAh g−1 after 500 cycles at a current density of 1 A g−1. In contrast, the capacity can be increased up to 253.9 mAh g−1 at the same current density when 7 mol% Al2O3 was doped in the MT glass (AlMoTe-7). Raman spectroscopy and x-ray photoelectron spectroscopy were employed to analyze the changes in the glass network upon the incorporation of Al2O3. Based on the structural analyses, we believe that the Al2O3 doping significantly influenced the activity of Mo that participated in the redox reaction, consequently increasing the Li+ ions diffusion coefficient and electron conductivity. Furthermore, the Li+ ions storage mechanism of LIBs based on TeO2-MoO3 glasses was investigated by examining the pseudocapacitive properties of the batteries. Our work suggests that inorganic glass materials could play an important role in LIBs anode materials upon appropriate structural design.

This is a preview of subscription content, access via your institution.

References

  1. X. Wu, S.X. Zhao, L.Q. Yu, J.W. Li, E.L. Zhao, and C.W. Nan, Electrochim. Acta 297, 872 (2019).

    CAS  Article  Google Scholar 

  2. B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, and R.P. Raffaelle, Energy Environ. Sci. 2, 638 (2009).

    CAS  Article  Google Scholar 

  3. C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008).

    CAS  Article  Google Scholar 

  4. G.D. Li, L.Q. Xu, Y.J. Zhai, and Y.Q. Hou, J. Mater. Chem. A 3, 14298 (2015).

    CAS  Article  Google Scholar 

  5. T. Zheng, G.D. Li, X.G. Meng, S.Y. Li, and M.M. Ren, Chem. Eur. J. 25, 885 (2019).

    CAS  Article  Google Scholar 

  6. Z.L. Chen, R.B. Wu, H. Wang, K.H.L. Zhang, Y. Song, F.L. Wu, F. Fang, and D.L. Sun, Nano Res. 11, 966 (2018).

    CAS  Article  Google Scholar 

  7. S. Boyanov, J. Bernardi, F. Gillot, L. Dupont, M. Womes, J.M. Tarascon, L. Monconduit, and M.L. Doublet, Chem. Mater. 18, 3531 (2006).

    CAS  Article  Google Scholar 

  8. J.W. Fergus, J. Power Sources 195, 939 (2010).

    CAS  Article  Google Scholar 

  9. H. Yamauchi, G. Park, T. Nagakane, T. Honma, T. Komatsu, T. Sakai, and A. Sakamoto, J. Electrochem. Soc. 160, A1725 (2013).

    CAS  Article  Google Scholar 

  10. L. Croguennec and M.R. Palacin, J. Am. Chem. Soc. 137, 3140 (2015).

    CAS  Article  Google Scholar 

  11. M.A. Kebede, N. Palaniyandy, R.M. Ramadan, and E. Sheha, J. Alloy Compd. 735, 445 (2018).

    CAS  Article  Google Scholar 

  12. Y.M. Moustafa, K. El-Egili, H. Doweidar, and I. Abbas, Phys. B 353, 82 (2004).

    CAS  Article  Google Scholar 

  13. Y.F. Zhang, P.X. Wang, T. Zheng, D.M. Li, G.D. Li, and Y.Z. Yue, Nano Energy 49, 596 (2018).

    CAS  Article  Google Scholar 

  14. Y. Dimitriev, V. Dimitrov, and M. Arnaudov, J. Mater. Sci. 18, 1353 (1983).

    CAS  Article  Google Scholar 

  15. M. Pal, K. Hirota, Y. Tsujigami, and H. Sakata, J. Phys. D Appl. Phys. 34, 459 (2001).

    CAS  Article  Google Scholar 

  16. J.A. Dean, Lange’s Handbook of Chemistry (New York: McGraw-Hill, Inc, 1999).

    Google Scholar 

  17. N. Kaur, A. Khanna, G.-B. Marina, F. González, and B. Chen, J. Non-Cryst. Solids 429, 153 (2015).

    CAS  Article  Google Scholar 

  18. A. Kaur, A. Khanna, M. González-Barriuso, F. González, and B. Chen, J. Non-Cryst.Solids 470, 14 (2017).

    CAS  Article  Google Scholar 

  19. K.A. Aly, A. Dahshan, and F.M. Abdel-Rahim, J. Alloy. Compd. 470, 574 (2009).

    CAS  Article  Google Scholar 

  20. A.S. Pine and G. Dresselhaus, Phys. Rev. B 5, 4087 (1972).

    Article  Google Scholar 

  21. A. Kaur, A. Khanna, F. González, C. Pesquera, and B. Chen, J. Non-Cryst.Solids 444, 1 (2016).

    CAS  Article  Google Scholar 

  22. B.V.R. Chowdari, K.L. Tan, and F. Ling, Solid State Ion. 113–115, 711 (1998).

    Article  Google Scholar 

  23. J.L. Gomes, R.L.S. Piazzetta, A. Goncalves, A. Somer, G.K. da Cruz, F.C. Serbena, and A. Novatski, J. Mater. Res. 30, 2417 (2015).

    CAS  Article  Google Scholar 

  24. A.G. Kalampounias and S. Boghosian, Vib. Spectrosc. 59, 18 (2012).

    CAS  Article  Google Scholar 

  25. T. Sekiya, N. Mochida, and S. Ogawa, J. Non-Cryst. Solids 185, 135 (1995).

    CAS  Article  Google Scholar 

  26. T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, J. Non-Cryst. Solids 144, 128 (1992).

    CAS  Article  Google Scholar 

  27. A.K. Yadav and P. Singh, RSC Adv. 5, 67583 (2015).

    CAS  Article  Google Scholar 

  28. G. Lakshminarayana, S.O. Baki, A. Lira, M.I. Sayyed, I.V. Kityk, M.K. Halimah, and M.A. Mahdi, J. Mater. Sci. 52, 7394 (2017).

    CAS  Article  Google Scholar 

  29. A. Mekki, G.D. Khattak, and L.E. Wenger, J. Electron. Spectrosc. 175, 21 (2009).

    CAS  Article  Google Scholar 

  30. M.A. Salim, G.D. Khattak, N. Tabet, and L.E. Wenger, J. Electron. Spectrosc. 128, 75 (2003).

    CAS  Article  Google Scholar 

  31. A. Mekki, G.D. Khattak, and L.E. Wenger, J. Non-Cryst. Solids 351, 2493 (2005).

    CAS  Article  Google Scholar 

  32. Y.X. Wang, J.P. Yang, S.L. Chou, H.K. Liu, W.X. Zhang, D.Y. Zhao, and S.X. Dou, Nat. Commun. 6, 8689 (2015).

    CAS  Article  Google Scholar 

  33. Z.Y. Wang, D.Y. Luan, S. Madhavi, Y. Hu, and X.W. Lou, Energy Environ. Sci. 5, 5252 (2012).

    CAS  Article  Google Scholar 

  34. P. Verma, P. Maire, and P. Novák, Electrochim. Acta 55, 6332 (2010).

    CAS  Article  Google Scholar 

  35. E. Peled, J. Electrochem. Soc. 126, 2047 (1979).

    CAS  Article  Google Scholar 

  36. L.V. Yashina, S.P. Kobeleva, T.B. Shatalova, V.P. Zlomanov, and V.I. Shtanov, Solid State Ion. 141–142, 513 (2001).

    Article  Google Scholar 

  37. F.B. Wang, G.D. Li, X.G. Meng, Y.X. Li, Q.F. Gao, Y.Q. Xu, and W.F. Cui, Inorg. Chem. Front. 5, 2462 (2018).

    CAS  Article  Google Scholar 

  38. J. Wang, J. Polleux, J. Lim, and B. Dunn, J. Phys. Chem. C 111, 14925 (2007).

    CAS  Article  Google Scholar 

  39. V. Augustyn, P. Simon, and B. Dunn, Energy Environ. Sci. 7, 1597 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11774188), the Incubation Program of Universities’ Preponderant Discipline of Shandong Province (No. 03010304), Mountain Tai Young Scholarship (No. 23170504), and the Natural Science Foundation of Shandong Province (No. ZR2018QB003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangda Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 242 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, G., Zheng, T. et al. Al2O3-Doped MoO3-TeO2 Glass as Anode Materials for Lithium-Ion Batteries with Long-Term Cycle Life. J. Electron. Mater. 49, 271–281 (2020). https://doi.org/10.1007/s11664-019-07709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07709-2

Keywords

  • TeO2-MoO3 glass
  • Al2O3 doping
  • lithium-ion battery
  • anode