Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Al2O3-Doped MoO3-TeO2 Glass as Anode Materials for Lithium-Ion Batteries with Long-Term Cycle Life

  • 38 Accesses

Abstract

Glass materials have found various applications owing to their low cost, free of grain boundaries and open topological network to accommodate various active species. We have fabricated a ternary glass of Al2O3-MoO3-TeO2 (AlMoTe) and investigated potential applications in lithium-ion batteries (LIBs). we have found that the incorporation of a certain amount of Al2O3 into 40TeO2-60MoO3 (MT-60) glass can lead to a significant enhancement in the cycling performance and specific capacity of LIBs. Specifically, when used as anode for LIBs, the capacity of MT-60 reached 112.5 mAh g−1 after 500 cycles at a current density of 1 A g−1. In contrast, the capacity can be increased up to 253.9 mAh g−1 at the same current density when 7 mol% Al2O3 was doped in the MT glass (AlMoTe-7). Raman spectroscopy and x-ray photoelectron spectroscopy were employed to analyze the changes in the glass network upon the incorporation of Al2O3. Based on the structural analyses, we believe that the Al2O3 doping significantly influenced the activity of Mo that participated in the redox reaction, consequently increasing the Li+ ions diffusion coefficient and electron conductivity. Furthermore, the Li+ ions storage mechanism of LIBs based on TeO2-MoO3 glasses was investigated by examining the pseudocapacitive properties of the batteries. Our work suggests that inorganic glass materials could play an important role in LIBs anode materials upon appropriate structural design.

References

  1. 1.

    X. Wu, S.X. Zhao, L.Q. Yu, J.W. Li, E.L. Zhao, and C.W. Nan, Electrochim. Acta 297, 872 (2019).

  2. 2.

    B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, and R.P. Raffaelle, Energy Environ. Sci. 2, 638 (2009).

  3. 3.

    C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008).

  4. 4.

    G.D. Li, L.Q. Xu, Y.J. Zhai, and Y.Q. Hou, J. Mater. Chem. A 3, 14298 (2015).

  5. 5.

    T. Zheng, G.D. Li, X.G. Meng, S.Y. Li, and M.M. Ren, Chem. Eur. J. 25, 885 (2019).

  6. 6.

    Z.L. Chen, R.B. Wu, H. Wang, K.H.L. Zhang, Y. Song, F.L. Wu, F. Fang, and D.L. Sun, Nano Res. 11, 966 (2018).

  7. 7.

    S. Boyanov, J. Bernardi, F. Gillot, L. Dupont, M. Womes, J.M. Tarascon, L. Monconduit, and M.L. Doublet, Chem. Mater. 18, 3531 (2006).

  8. 8.

    J.W. Fergus, J. Power Sources 195, 939 (2010).

  9. 9.

    H. Yamauchi, G. Park, T. Nagakane, T. Honma, T. Komatsu, T. Sakai, and A. Sakamoto, J. Electrochem. Soc. 160, A1725 (2013).

  10. 10.

    L. Croguennec and M.R. Palacin, J. Am. Chem. Soc. 137, 3140 (2015).

  11. 11.

    M.A. Kebede, N. Palaniyandy, R.M. Ramadan, and E. Sheha, J. Alloy Compd. 735, 445 (2018).

  12. 12.

    Y.M. Moustafa, K. El-Egili, H. Doweidar, and I. Abbas, Phys. B 353, 82 (2004).

  13. 13.

    Y.F. Zhang, P.X. Wang, T. Zheng, D.M. Li, G.D. Li, and Y.Z. Yue, Nano Energy 49, 596 (2018).

  14. 14.

    Y. Dimitriev, V. Dimitrov, and M. Arnaudov, J. Mater. Sci. 18, 1353 (1983).

  15. 15.

    M. Pal, K. Hirota, Y. Tsujigami, and H. Sakata, J. Phys. D Appl. Phys. 34, 459 (2001).

  16. 16.

    J.A. Dean, Lange’s Handbook of Chemistry (New York: McGraw-Hill, Inc, 1999).

  17. 17.

    N. Kaur, A. Khanna, G.-B. Marina, F. González, and B. Chen, J. Non-Cryst. Solids 429, 153 (2015).

  18. 18.

    A. Kaur, A. Khanna, M. González-Barriuso, F. González, and B. Chen, J. Non-Cryst.Solids 470, 14 (2017).

  19. 19.

    K.A. Aly, A. Dahshan, and F.M. Abdel-Rahim, J. Alloy. Compd. 470, 574 (2009).

  20. 20.

    A.S. Pine and G. Dresselhaus, Phys. Rev. B 5, 4087 (1972).

  21. 21.

    A. Kaur, A. Khanna, F. González, C. Pesquera, and B. Chen, J. Non-Cryst.Solids 444, 1 (2016).

  22. 22.

    B.V.R. Chowdari, K.L. Tan, and F. Ling, Solid State Ion. 113–115, 711 (1998).

  23. 23.

    J.L. Gomes, R.L.S. Piazzetta, A. Goncalves, A. Somer, G.K. da Cruz, F.C. Serbena, and A. Novatski, J. Mater. Res. 30, 2417 (2015).

  24. 24.

    A.G. Kalampounias and S. Boghosian, Vib. Spectrosc. 59, 18 (2012).

  25. 25.

    T. Sekiya, N. Mochida, and S. Ogawa, J. Non-Cryst. Solids 185, 135 (1995).

  26. 26.

    T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, J. Non-Cryst. Solids 144, 128 (1992).

  27. 27.

    A.K. Yadav and P. Singh, RSC Adv. 5, 67583 (2015).

  28. 28.

    G. Lakshminarayana, S.O. Baki, A. Lira, M.I. Sayyed, I.V. Kityk, M.K. Halimah, and M.A. Mahdi, J. Mater. Sci. 52, 7394 (2017).

  29. 29.

    A. Mekki, G.D. Khattak, and L.E. Wenger, J. Electron. Spectrosc. 175, 21 (2009).

  30. 30.

    M.A. Salim, G.D. Khattak, N. Tabet, and L.E. Wenger, J. Electron. Spectrosc. 128, 75 (2003).

  31. 31.

    A. Mekki, G.D. Khattak, and L.E. Wenger, J. Non-Cryst. Solids 351, 2493 (2005).

  32. 32.

    Y.X. Wang, J.P. Yang, S.L. Chou, H.K. Liu, W.X. Zhang, D.Y. Zhao, and S.X. Dou, Nat. Commun. 6, 8689 (2015).

  33. 33.

    Z.Y. Wang, D.Y. Luan, S. Madhavi, Y. Hu, and X.W. Lou, Energy Environ. Sci. 5, 5252 (2012).

  34. 34.

    P. Verma, P. Maire, and P. Novák, Electrochim. Acta 55, 6332 (2010).

  35. 35.

    E. Peled, J. Electrochem. Soc. 126, 2047 (1979).

  36. 36.

    L.V. Yashina, S.P. Kobeleva, T.B. Shatalova, V.P. Zlomanov, and V.I. Shtanov, Solid State Ion. 141–142, 513 (2001).

  37. 37.

    F.B. Wang, G.D. Li, X.G. Meng, Y.X. Li, Q.F. Gao, Y.Q. Xu, and W.F. Cui, Inorg. Chem. Front. 5, 2462 (2018).

  38. 38.

    J. Wang, J. Polleux, J. Lim, and B. Dunn, J. Phys. Chem. C 111, 14925 (2007).

  39. 39.

    V. Augustyn, P. Simon, and B. Dunn, Energy Environ. Sci. 7, 1597 (2014).

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11774188), the Incubation Program of Universities’ Preponderant Discipline of Shandong Province (No. 03010304), Mountain Tai Young Scholarship (No. 23170504), and the Natural Science Foundation of Shandong Province (No. ZR2018QB003).

Author information

Correspondence to Guangda Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 242 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, G., Zheng, T. et al. Al2O3-Doped MoO3-TeO2 Glass as Anode Materials for Lithium-Ion Batteries with Long-Term Cycle Life. Journal of Elec Materi 49, 271–281 (2020). https://doi.org/10.1007/s11664-019-07709-2

Download citation

Keywords

  • TeO2-MoO3 glass
  • Al2O3 doping
  • lithium-ion battery
  • anode