Skip to main content
Log in

Electronic and Magnetic Tunability of SnSe Monolayer via Doping of Transition-Metal Atoms

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structure and electronic and magnetic properties of SnSe monolayer doped with transition-metal (TM) atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) were investigated using first-principles calculations. It is found that TM atoms can substitute either Se atoms (TM-Se) or Sn atoms (TM-Sn) to form thermodynamically stable systems. Semiconductor–metal or semiconductor–half metal transitions may be induced by TM atom doping, depending on the types of dopants and substituted atoms. The pristine nonmagnetic SnSe monolayers can be turned into magnetic systems by TM dopants. Especially, for TM-Se systems (TM = Sc, V, Mn and Fe) and TM-Sn systems (TM = V, Cr, Mn, Fe and Co), the monolayers become two-dimensional narrow-band diluted magnetic semiconductors (DMSs). Among the magnetic systems, TM-Se systems can exhibit either obviously enhanced (TM = Sc, Ti, V and Cu) or weakened (TM = Mn, Fe and Co) total magnetic moments, due to the strong interaction between the 3d-orbit of the dopant atoms and the 5p-orbit of the neighboring Sn atoms, while TM-Sn systems only exhibit slightly enhanced total magnetic moments, which shows the greater electronic tunability of Sn atoms than that of Se atoms. Our results may provide a platform for potential applications of SnSe monolayer-based spintronic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Huang, G. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng, K.L. Seyler, D. Zhong, E. Schmidgall, M.A. McGuire, D.H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Nature 546, 270 (2017).

    Article  CAS  Google Scholar 

  2. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z.Q. Qiu, R.J. Cava, S.G. Louie, J. Xia, and X. Zhang, Nature 546, 265 (2017).

    Article  CAS  Google Scholar 

  3. M. Bonilla, S. Kolekar, Y. Ma, H.C. Diaz, V. Kalappattil, R. Das, T. Eggers, H.R. Gutierrez, M.-H. Phan, and M. Batzill, Nat. Nanotechnol. 13, 289 (2018).

    Article  CAS  Google Scholar 

  4. P.M. Coelho, H.P. Komsa, H.C. Diaz, Y. Ma, K. Lasek, V. Kalappattil, J. Karthikeyan, M.H. Phan, A.V. Krasheninnikov, and M. Batzill, Adv. Electron. Mater. 5, 1900044 (2019).

    Article  Google Scholar 

  5. A. Avsar, A. Ciarrocchi, M. Pizzochero, D. Unuchek, O.V. Yazyev, and A. Kis, Nat. Nanotechnol. 14, 674 (2019).

    Article  CAS  Google Scholar 

  6. J. Sharma, G. Singh, A. Thakur, G.S.S. Saini, N. Goyal, and S.K. Tripathi, J. Optoelectron. Adv. M. 7, 2085 (2005).

    CAS  Google Scholar 

  7. M. Biçer and İ. ŞiŞman, Appl. Surf. Sci. 257, 2944 (2011).

    Article  Google Scholar 

  8. N.R. Mathews, Sol. Energy 86, 1010 (2012).

    Article  CAS  Google Scholar 

  9. N.D. Boscher, C.J. Carmalt, R.G. Palgrave, and I.P. Parkin, Thin Solid Films 516, 4750 (2008).

    Article  CAS  Google Scholar 

  10. I. Lefebvre, M.A. Szymanski, J. Olivier-Fourcade, and J.C. Jumas, Phys. Rev. B. 58, 1896 (1998).

    Article  CAS  Google Scholar 

  11. P.D. Antunez, J.J. Buckley, and R.L. Brutchey, Nanoscale. 3, 2399 (2011).

    Article  CAS  Google Scholar 

  12. S. Liu, X. Guo, M. Li, W.-H. Zhang, X. Liu, and C. Li, Angew. Chem. Int. Edit. 50, 12050 (2011).

    Article  CAS  Google Scholar 

  13. D. Chun, R.M. Walser, R.W. Bene, and T.H. Courtney, Appl. Phys. Lett. 24, 479 (1974).

    Article  CAS  Google Scholar 

  14. Z. Yang, G. Du, Q. Meng, Z. Guo, X. Yu, Z. Chen, T. Guo, and R. Zeng, RSC Adv. 1, 1834 (2011).

    Article  CAS  Google Scholar 

  15. G. Xiao, Y. Wang, J. Ning, Y. Wei, B. Liu, W.W. Yu, G. Zou, and B. Zou, RSC Adv. 3, 8104 (2013).

    Article  CAS  Google Scholar 

  16. M.Z. Xue, J. Yao, S.C. Cheng, and Z.W. Fu, J. Electrochem. Soc. 153, A270 (2006).

    Article  CAS  Google Scholar 

  17. Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, and Y. Liu, J. Phys. Chem. C 114, 7920 (2010).

    Article  CAS  Google Scholar 

  18. M.A. Franzman, C.W. Schlenker, M.E. Thompson, and R.L. Brutchey, J. Am. Chem. Soc. 132, 4060 (2010).

    Article  CAS  Google Scholar 

  19. W.J. Baumgardner, J.J. Choi, Y.-F. Lim, and T. Hanrath, J. Am. Chem. Soc. 132, 9519 (2010).

    Article  CAS  Google Scholar 

  20. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).

    Article  CAS  Google Scholar 

  21. D.-J. Xue, J. Tan, J.-S. Hu, W. Hu, Y.-G. Guo, and L.-J. Wan, Adv. Mater. 24, 4528 (2012).

    Article  CAS  Google Scholar 

  22. B. Pejova and I. Grozdanov, Thin Solid Films 515, 5203 (2007).

    Article  CAS  Google Scholar 

  23. J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, Nat. Commun. 5, 4475 (2014).

    Article  CAS  Google Scholar 

  24. L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, and Q. Wang, J. Am. Chem. Soc. 135, 1213 (2013).

    Article  CAS  Google Scholar 

  25. L. Huang, F. Wu, and J. Li, J. Chem. Phys. 144, 114708 (2016).

    Article  Google Scholar 

  26. X. Cai, J. Luo, X. Zhang, and G. Xiang, Mater. Res. Express. 5, 035013 (2018).

    Article  Google Scholar 

  27. Q. Wang, W. Yu, X. Fu, C. Qiao, C. Xia, and Y. Jia, Phys. Chem. Chem. Phys. 18, 8158 (2016).

    Article  CAS  Google Scholar 

  28. A. Hashmi and J. Hong, J. Phys. Chem. C 119, 9198 (2015).

    Article  CAS  Google Scholar 

  29. X.-L. Fan, Y.-R. An, and W.-J. Guo, Nanoscale Res. Lett. 11, 154 (2016).

    Article  Google Scholar 

  30. A.A. Tedstone, D.J. Lewis, and P. O’Brien, Chem. Mater. 28, 1965 (2016).

    Article  CAS  Google Scholar 

  31. C. Tang, Q. Li, C. Zhang, C. He, J. Li, T. Ouyang, H. Li, and J. Zhong, J. Phys. D Appl. Phys. 51, 245004 (2018).

    Article  Google Scholar 

  32. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  33. G. Kresse and J. Furthmuller, Phys. Rev. B. 54, 11169 (1996).

    Article  CAS  Google Scholar 

  34. P.E. Blöchl, Phys. Rev. B. 50, 17953 (1994).

    Article  Google Scholar 

  35. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  36. P. Fernandes, M. Sousa, P.M. Salome, J. Leitao, and A. da Cunha, CrystEngComm 15, 10278 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China through Grant No. 2017YFB0405702 and Natural Science Foundation of China through Grant No 51672179.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Xiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Guo, L., Xiang, G. et al. Electronic and Magnetic Tunability of SnSe Monolayer via Doping of Transition-Metal Atoms. J. Electron. Mater. 49, 290–296 (2020). https://doi.org/10.1007/s11664-019-07701-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07701-w

Keywords

Navigation