Skip to main content
Log in

Hybrid Nickel Ferrite Nanotubes Doped Polyaniline Nanocomposite and Its Dielectric Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanotubes of nickel ferrite were prepared by the citrate method and were used in nanocomposite synthesis via in situ polymerization technique. The structural and surface morphology characterizations were carried out by Fourier-transform infrared spectroscopy (FTIR), x-ray powder diffraction (XRD), and scanning electron microscopy (SEM) techniques. FTIR spectra show the characteristic peaks of benzenoid ring, quinoid ring, and nickel ferrite stretching of tetrahedral and octahedral sites. XRD pattern shows the cubic spinal structure of NiFe2O4 nanotubes and it remaining undistorted even after dispersion in a polyaniline matrix. The SEM image of 15 wt.% nanocomposite shows that the polyaniline coated nickel ferrite nanotubes form a length about 100 nm. Furthermore, the DC conductivity shows three steps conductivity feature and among all prepared nanocomposites, the 15 wt.% shows high conductivity of 1.89 S/cm. This is due to high absorption at activation energy of 0.213 × 10−2 J/mol and elongation of nanocomposites chain length which is confirmed from the negative thermal coefficient (NTC) graph. The vibrating sample magnetometer (VSM) study shows the saturation magnetization decrease after formation of polyaniline nanocomposite. The dielectric properties were analyzed by impedance analyzer, and it was found that 15 wt.% nanocomposite shows the lowest dielectric constant and dielectric loss as a result of high ac conductivity of about 1.32 S/cm which is due to the sharp drop in bulk resistance and low relaxation time of 0.1375 μs as evidenced from the cole-cole plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Obayashi, Y. Sakurai, and T. Gejo, J. Solid State Chem. 17, 299 (1976).

    CAS  Google Scholar 

  2. A.S. Roy, K.R. Anilkumar, and M.V.N. Ambika Prasad, J. Appl. Polym. Sci. 121, 675 (2011).

    CAS  Google Scholar 

  3. W. Xue, K. Fang, H. Qiu, J. Li, and W. Mao, Synth. Met. 156, 506 (2006).

    CAS  Google Scholar 

  4. A.S. Roy, K.R. Anilkumar, and M.V.N. Ambika Prasad, J. Appl. Polym. Sci. 123, 1928 (2012).

    CAS  Google Scholar 

  5. A.R. Phani and S. Santucki, Mater. Lett. 50, 240 (2001).

    CAS  Google Scholar 

  6. A. Parveen, K.R. Anilkumar, S. Ekhelikar, M. Revansiddappa, and M.V.N. Ambika Prasad, Ferroelectrics 377, 63 (2008).

    CAS  Google Scholar 

  7. I.Y. Jeon and J.B. Baek, Materials 3, 3654 (2010).

    CAS  Google Scholar 

  8. A.S. Roy, S. Gupta, S. Sindhu, A. Parveen, and P.C. Ramamurthy, Composit. Part B 47, 314 (2013).

    CAS  Google Scholar 

  9. N. Dharmaraj, H.C. Park, C.K. Kim, H.Y. Kim, and D.R. Lee, Mater. Chem. Phys. 87, 5 (2004).

    CAS  Google Scholar 

  10. Z.D. Xiang, T. Chen, Z.M. Li, and X.C. Bian, Macromol. Mater. Eng. 294, 91 (2009).

    CAS  Google Scholar 

  11. L.I. Qingshan, G.A.O. Wenjie, and M.A. Pengsheng, Adv. Nat. Sci. 1, 81 (2008).

    Google Scholar 

  12. R.D. Balikile, A.S. Roy, S.C. Nagaraju, and G. Ramgopal, J. Mater. Sci. Mater. Electron. 28, 7368 (2017).

    CAS  Google Scholar 

  13. S. Khasim, S.C. Raghavendra, M. Revanasiddappa, K.C. Sajjan, M. Lakshmi, and M. Faisal, Bull. Mater. Sci. 34, 1557 (2011).

    CAS  Google Scholar 

  14. T. Bashir, A. Shakoor, E. Ahmad, M. Saeed, N.A. Niaz, and S.K. Tirmizi, Polym. Sci. Ser. B 57, 257 (2015).

    CAS  Google Scholar 

  15. V.A. Khati, S.B. Kondawar, and V.A. Tabhane, Anal. Bioanal. Electrochem. 3, 614 (2011).

    Google Scholar 

  16. S. Wang, L. Hu, Y. Hu, and S. Jiao, Mater. Chem. Phys. 146, 289 (2014).

    CAS  Google Scholar 

  17. H. Wang, J. Lin, Z.X. Shen, and J. Sci, Adv. Mater. Dev. 1, 225 (2016).

    Google Scholar 

  18. G. Chakraborty, K. Gupta, A.K. Meikap, R. Babu, and W.J. Blau, J. Appl. Phys. 109, 033707 (2011).

    Google Scholar 

  19. J.S.M. da Silva, S.M. de Souza, G. Trovati, and E.A. Sanches, J. Mol. Struct. 1127, 337 (2017).

    Google Scholar 

  20. H. Xue, Z. Shen, and Y. Li, Synth. Met. 124, 345 (2001).

    CAS  Google Scholar 

  21. S. Khasim, A. Pasha, A.S. Roy, A. Parveen, and N. Badi, J. Electron. Mater. 46, 4439 (2017).

    CAS  Google Scholar 

  22. R.S. Andre, F.M. Shimizu, C.M. Miyazaki, A. Riul Jr, D. Manzani, S.J.L. Ribeiro, O.N. Oliveira Jr, L.H.C. Mattoso, and D.S. Correa, Sens. Actuat. B 238, 795 (2017).

    CAS  Google Scholar 

  23. J.N. Ansari, S. Khasim, A. Parveen, O.A. Al-Hartomy, Z. Khattari, N. Badi, and A.S. Roy, Polym. Adv. Technol. 27, 1064 (2016).

    CAS  Google Scholar 

  24. B. Fanfei, H. Yun, H. Ping, T. Yiwen, and J. Zhijie, Mater. Lett. 60, 3126 (2006).

    Google Scholar 

  25. A.S. Roy, Sens. Actuat A. 280, 1–7 (2018).

    CAS  Google Scholar 

  26. A. Johari, V. Rana, and M.C. Bhatnagar, Nanomater. Nanotechnol. 1, 49 (2011).

    CAS  Google Scholar 

  27. J. Rockenberger, U. Zum Felde, M. Tischer, L. Troger, M. Haase, and H. Weller, J. Chem. Phys. 112, 4296 (2000).

    CAS  Google Scholar 

  28. X. Li, M. Yu, Z. Chen, X. Lin, and Q. Wu, Sen. Actuat. B 239, 874 (2017).

    CAS  Google Scholar 

  29. A. Puda, N. Ogurtsova, A. Korzhenko, and G. Shapovala, Prog. Polym. Sci. 28, 1701 (2003).

    Google Scholar 

  30. R. Patil, A.S. Roy, K.R. Anilkumar, K.M. Jadhav, and S. Ekhelikar, Comput. Part B Eng. 43, 3406 (2012).

    CAS  Google Scholar 

  31. J.P. Clere, G. Girand, J.M. Laugier, and J.M. Lucky, Adv. Phys. 39, 191 (1990).

    Google Scholar 

  32. T.A. Ezquerra, F. Kremer, and G. Wagner, PIER 06, 273 (1992).

    CAS  Google Scholar 

  33. D.S. Melachain and R.E. Newnham, J. Am. Cerm. Soc. 73, 2187 (1990).

    Google Scholar 

  34. Q. Zhou, Y. Wang, J. Xiao, and H. Fan, Synth. Met. 212, 113 (2016).

    CAS  Google Scholar 

  35. E. Ayyıldız, Ç. Nuhoğlu, and A. Türüt, J. Electron. Mater. 31, 119 (2002).

    Google Scholar 

  36. M. Goswamia, R. Ghoshb, T. Maruyamac, and A.K. Meikap, Appl. Surf. Sci. 364, 176 (2016).

    Google Scholar 

  37. R. Patil, A.S. Roy, K.R. Anilkumar, and S. Ekhelikar, J. Appl. Polym. Sci. 121, 262 (2011).

    CAS  Google Scholar 

  38. S. Agarwal, A. Greiner, and J.H. Wendorff, Prog. Polym. Sci. 38, 963 (2013).

    CAS  Google Scholar 

  39. A.S. Roy, S. Gupta, S. Sindhu, P.C. Ramamurthy, and G. Madras, Sci. Adv. Mater. 6, 946 (2014).

    CAS  Google Scholar 

  40. X.Z. Gao, H.J. Liu, F. Cheng, and Y. Chen, Chem. Eng. J. 283, 682 (2016).

    CAS  Google Scholar 

  41. L. Zhou, H. Mao, and A. Yu, J. Electroanal. Chem. 761, 62 (2016).

    CAS  Google Scholar 

  42. A. Parveen and A.S. Roy, Adv. Mater. Lett. 4, 696 (2013).

    CAS  Google Scholar 

  43. A.S. Roy, S.H. Gopalkrishna, and A. Parveen, Polym. Adv. Technol. 25, 130 (2014).

    CAS  Google Scholar 

  44. A.S. Roy, A. Parveen, R. Deshpande, R. Bhat, and K.R. Anilkumar, J. Nanopart. Res. 15, 1337 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aashish S. Roy or G. Ramgopal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balikile, R.D., Roy, A.S., Parveen, A. et al. Hybrid Nickel Ferrite Nanotubes Doped Polyaniline Nanocomposite and Its Dielectric Properties. J. Electron. Mater. 49, 833–841 (2020). https://doi.org/10.1007/s11664-019-07697-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07697-3

Keywords

Navigation