Skip to main content

Thermal, Electrical and Mechanical Properties of Expanded Graphite and Micro-SiC Filled Hybrid Epoxy Composite for Electronic Packaging Applications

Abstract

The synthesis of high-thermal-conductivity expanded graphite (EG) by a physical method from natural graphite flakes using zinc nitrate hexahydrate is described herein. This article establishes thermal conductivity studies of the epoxy composite system containing a hybrid of EG, a soft material, and micro-SiC, a hard material, with different filler fractions. To verify the texture and appearance, the filler materials were characterized by polarized light and scanning electron microscopy. The thermal conductivity of the fabricated hybrid epoxy composites was analyzed by a guarded hot plate meter technique. The electrical properties of the hybrid composite were evaluated by a four-point potentiometer. The single-lap shear strength of optimized composition was observed under a universal testing machine. The thermomechanical behavior and thermal stability of the hybrid composites were investigated through dynamic mechanical analysis and thermogravimetric analysis, respectively. The dispersive status and synergistic effect of the hybrid filler inside the epoxy matrix were studied through fracture surface analysis by scanning electron microscopy. With the addition of 15 wt.% EG and 15 wt.% micro-SiC to the epoxy resin, thermal conductivity of up to 2.24 W/mK was achieved for the hybrid composite, which was an 11.6-fold improvement over unaided epoxy.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. Zhang, H. Deng, and Q. Fu, Compos. Commun. 8, 74 (2018).

    Article  Google Scholar 

  2. 2.

    H. Chen, V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, W. Liu, Y. Huang, L. Du, and B. Chen, Prog. Polym. Sci. 59, 41 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Z. Wang, R. Qi, J. Wang, and S. Qi, Ceram. Int. 41, 13541 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    R. Moosaei, M. Sharif, and A. Ramezannezhad, Polym. Test. 60, 173 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    K. Srinivas and M.S. Bhagyashekar, J. Miner. Mater. Charact. Eng. 3, 76 (2015).

    CAS  Google Scholar 

  6. 6.

    S.Y. Mun, H.M. Lim, and S.H. Lee, Mater. Res. Bull. 97, 19 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    A. Yasmin, J.J. Luo, and I.M. Daniel, Compos. Sci. Technol. 66, 1182 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    B. Román-Manso, Y. Chevillotte, M.I. Osendi, M. Belmonte, and P. Miranzo, J. Eur. Ceram. Soc. 36, 3987 (2016).

    Article  Google Scholar 

  9. 9.

    A. W. Weimer, in Carbide, Nitride and Boride Materials Synthesis and Processing (Springer, Dordrecht, 1997), p. 79.

    Chapter  Google Scholar 

  10. 10.

    S. E. Saddow, A. Agarwal, Advances in Silicon Carbide Processing and Applications (Artech House, 2004).

  11. 11.

    D. Ding, Y. Shi, Z. Wu, W. Zhou, F. Luo, and J. Chen, Carbon 60, 552 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Y. Mu, W. Zhou, C. Wang, F. Luo, D. Zhu, and D. Ding, Ceram. Int. 40, 10037 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    H. Mei, D. Han, S. Xiao, T. Ji, J. Tang, and L. Cheng, Carbon 109, 149 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    T. Zhou, X. Wang, X. Liu, and D. Xiong, Carbon 48, 1171 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    F. Kargar, Z. Barani, R. Salgado, B. Debnath, J.S. Lewis, E. Aytan, K.L. Roger, and A.A. Balandin, ACS Appl. Mater. Interfaces 10, 37555 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    A. Malas, C.K. Das, A. Das, and G. Heinrich, Mater. Des. 39, 410 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Wang, J.E. Panzik, B. Kiefer, and K.K. Lee, Sci. Rep. 2, 520 (2012).

    Article  Google Scholar 

  18. 18.

    M.J. Akhtar, M. Ahamed, S. Kumar, M.M. Khan, J. Ahmad, and S.A. Alrokayan, Int. J. Nanomed. 7, 845 (2012).

    CAS  Google Scholar 

  19. 19.

    C. Rimbu, N. Vrinceanu, G. Broasca, D. Farima, M. Ciocoiu, C. Campagne, M.P. Suchea, and A. Nistor, Text. Res. J. 83, 2142 (2013).

    Article  Google Scholar 

  20. 20.

    A. Karaipekli, A. Sarı, and K. Kaygusuz, Renew. Energy 32, 2201 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    X. Wu, J. Lee, V. Varshney, J.L. Wohlwend, A.K. Roy, and T. Luo, Sci. Rep. 6, 22504 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    H. Shin, S. Yang, S. Chang, S. Yu, and M. Cho, Polymer 54, 1543 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    N.K. Mahanta, M.R. Loos, I.M. Zlocozower, and A.R. Abramson, J. Mater. Res. 30, 959 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    R. Kumar, S.K. Nayak, S. Sahoo, B.P. Panda, S. Mohanty, and S.K. Nayak, J. Mater. Sci. Mater. Electron. 29, 16932 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    X. Ren, D. Chen, X. Meng, F. Tang, X. Hou, D. Han, and L. Zhang, J. Colloid Interface Sci. 334, 183 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    M. Rahaman, A. Aldalbahi, P. Govindasami, N. Khanam, S. Bhandari, P. Feng, and T. Altalhi, Polymers 9, 527 (2017).

    Article  Google Scholar 

  27. 27.

    L. Melnyk, Technol. Audit Prod. Reserves 3, 28 (2017).

    Article  Google Scholar 

  28. 28.

    P.K. Ghosh, S. Halder, M.S. Goyat, and G. Karthik, J. Adhes. 89, 55 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    S.K. Nayak, S. Mohanty, and S.K. Nayak, SN Appl. Sci. 1, 337 (2019).

    Article  Google Scholar 

  30. 30.

    N. Badwe, R. Mahajan, and K. Sieradzki, Acta Mater. 103, 512 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    R. Kumar, S. Mohanty, and S.K. Nayak, SN Appl. Sci. 1, 180 (2019).

    Article  Google Scholar 

  32. 32.

    R. Moriche, S.G. Prolongo, M. Sánchez, A. Jiménez-Suárez, F.J. Chamizo, and A. Ureña, Int. J. Adhes. Adhes. 68, 407 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    K. Kumar, P.K. Ghosh, and A. Kumar, Compos. B 97, 353 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    E.V. Kuvardina, L.A. Novokshonova, S.M. Lomakin, S.A. Timan, and I.A. Tchmutin, J. Appl. Polym. Sci. 128, 1417 (2013).

    CAS  Google Scholar 

  35. 35.

    S. Chandrasekaran, C. Seidel, and K. Schulte, Eur. Polym. J. 49, 3878 (2013).

    CAS  Article  Google Scholar 

  36. 36.

    H. Im and J. Kim, Carbon 50, 5429 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    K. Takahashi, A. Yoshikawa, and A. Sandhu, Wide Bandgap Semiconductors (Springer Berlin, 2007), p. 239.

  38. 38.

    W. M. Haynes (ed.), CRC Handbook of Chemistry and Physics, 92nd edn. (CRC Press, Boca Raton, 2011). ISBN 978-1439855119.

Download references

Acknowledgments

This work is supported by the Board of Research in Nuclear Science (BRNS), Department of Atomic Energy (DAE), Govt. of India (project No.39/14/01/2018-BRNS/39001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sagar Kumar Nayak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nayak, S.K., Mohanty, S. & Nayak, S.K. Thermal, Electrical and Mechanical Properties of Expanded Graphite and Micro-SiC Filled Hybrid Epoxy Composite for Electronic Packaging Applications. Journal of Elec Materi 49, 212–225 (2020). https://doi.org/10.1007/s11664-019-07681-x

Download citation

Keywords

  • Thermal conductivity
  • electrical conductivity
  • expanded graphite
  • silicon carbide (SiC)
  • epoxy
  • hybrid composites