Skip to main content
Log in

Two-Phase η′ + η Region in Cu6Sn5 Intermetallic: Insight into the Order–Disorder Transition from Diffusion Couples

  • TMS2019 Phase Stability in Electronic Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The ongoing electrification and miniaturization increase the quality demands on solder joints. A bottleneck for solder joint reliability can be the intermetallic Cu6Sn5 phase, which undergoes a phase transition, implying a volume change in a relevant temperature range. There are contradicting reports on the sign and magnitude of this volume change, which possibly implements stresses and cracks in solder joints. To clarify the characteristics of the phase transition, different samples were manufactured by applying industrial-like standards and isothermal heat treatments around the predicted phase transition temperature. Using x-ray diffraction, a coexistence of ordered η′ and disordered η was detected in samples treated at 438–445 K. The lattice parameters show that the volume of the disordered η phase is approximately 0.64–0.65% smaller than the one of the ordered η′ phase. A comparison with order–disorder transitions in structurally related phases shows that the volume change based on order–disorder transitions is normally of opposite sign and around 0.1–0.2%. Therefore, an effect of different compositions is considered responsible for the volume change. Adopting the exact composition Cu6Sn5 (Cu1.20Sn) for the η′ phase, it was estimated, based on density functional theory calculations from the literature, that the coexisting η phase assumes lower Cu content of Cu1.171Sn at 438 K and Cu1.174Sn at 445 K. In contrast, the lattice parameters of η′, generated at different temperatures, imply a largely temperature-independent composition of Cu1.20Sn. This leads to adjustments of the Cu-Sn phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Lidin and A.-K. Larsson, J. Solid State Chem. 118, 313 (1995).

    Article  CAS  Google Scholar 

  2. A.-K. Larsson, L. Stenberg, and S. Lidin, Acta Crystallogr. Sect. B: Struct. Sci. 50, 636 (1994).

    Article  Google Scholar 

  3. A.-K. Larsson, L. Stenberg, S. Lidin, and Z. Kristallogr, Cryst. Mater. 210, 832 (1995).

    CAS  Google Scholar 

  4. Y. Wu, J. Barry, T. Yamamoto, Q. Gu, S. McDonald, S. Matsumura, H. Huang, and K. Nogita, Acta Mater. 60, 6581 (2012).

    Article  CAS  Google Scholar 

  5. D.K. Mu, S.D. McDonald, J. Read, H. Huang, and K. Nogita, Curr. Opin. Solid State Mater. Sci. 20, 55 (2016).

    Article  CAS  Google Scholar 

  6. C. Wieser, A. Walnsch, W. Huegel, and A. Leineweber, J. Alloys Comp. 794, 491 (2019).

    Article  CAS  Google Scholar 

  7. A. Leineweber, M. Ellner, and E. Mittemeijer, J. Solid State Chem. 159, 191 (2001).

    Article  CAS  Google Scholar 

  8. A. Leineweber, J. Solid State Chem. 177, 1197 (2004).

    Article  CAS  Google Scholar 

  9. A. Leineweber, J. Solid State Chem. 182, 1846 (2009).

    Article  CAS  Google Scholar 

  10. M. Elding-Pontén, L. Stenberg, A.-K. Larsson, S. Lidin, and K. Ståhl, J. Solid State Chem. 129, 231 (1997).

    Article  Google Scholar 

  11. M. Elding-Pontén, L. Stenberg, S. Lidin, G. Madariaga, and J.M. Pérez-Mato, Acta Crystallogr. Sect. B: Struct. Sci. 53, 364 (1997).

    Article  Google Scholar 

  12. S. Lidin and S. Piao, Eur. J. Inorg. Chem. 31, 3548 (2018).

    Article  Google Scholar 

  13. M. Ellner, T. Gödecke, and K. Schubert, J. Less Common Met. 24, 23 (1971).

    Article  CAS  Google Scholar 

  14. A.-K. Larsson and R. Withers, J. Alloys Compd. 264, 125 (1998).

    Article  CAS  Google Scholar 

  15. N. Saunders and A.P. Miodownik, Bull. Alloy Phase Diagr. 3, 278 (1990).

    Article  Google Scholar 

  16. G. Raynor, The Equilibrium Diagram of the System Copper–Tin (London: Institute of Metals, 1944).

    Google Scholar 

  17. A. Westgren, G. Phragmén, and Z. Anorg, Allg. Chem. 175, 80 (1928).

    Article  CAS  Google Scholar 

  18. S. Fuertauer, D. Li, D. Cupid, and H. Flandorfer, Intermetallics 34, 142 (2013).

    Article  CAS  Google Scholar 

  19. S. Lidin, S. Piao, and Z. Anorg, Allg. Chem. 635, 611 (2009).

    Article  CAS  Google Scholar 

  20. P. Franke and D. Neuschuetz, Binary Systems. Part 3: Binary Systems from Cs-K to Mg-Zr (Landolt-Börnstein—Group IV Physical Chemistry) (Berlin: Springer, 2005), pp. 1–4.

    Book  Google Scholar 

  21. M.Y. Li, Z.H. Zhang, and J. Kim, Appl. Phys. Lett. 98, 201901 (2011).

    Article  Google Scholar 

  22. G. Zeng, S.D. McDonald, J.J. Read, Q. Gu, and K. Nogita, Acta Mater. 69, 135 (2014).

    Article  CAS  Google Scholar 

  23. G. Ghosh and M. Asta, J. Mater. Res. 20, 3102 (2005).

    Article  CAS  Google Scholar 

  24. K. Nogita, C.M. Gourlay, and T. Nishimaru, J. Electron. Mater. 61, 45 (2009).

    CAS  Google Scholar 

  25. D. Mu, J. Read, Y. Yang, and K. Nogita, J. Mater. Res. 26, 2660 (2011).

    Article  CAS  Google Scholar 

  26. K. Nogita, D. Mu, S. McDonald, J. Read, and Y. Wu, Intermetallics 26, 78 (2012).

    Article  CAS  Google Scholar 

  27. J. Xian, G. Zeng, S. Belyakov, Q. Gu, K. Nogita, and C. Gourlay, Intermetallics 91, 50 (2017).

    Article  CAS  Google Scholar 

  28. Bruker AXS GmbH, TOPAS V. 5.0, Karlsruhe (2004)

  29. P. Thompson, D.E. Cox, and J.B. Hastings, J. Appl. Crystallogr. 20, 79 (1987).

    Article  CAS  Google Scholar 

  30. G.S. Pawley, J. Appl. Crystallogr. 14, 357 (1981).

    Article  CAS  Google Scholar 

  31. W.L. Bragg, Philos. Mag. 28, 355 (1914).

    Article  CAS  Google Scholar 

  32. H. Knödler, Acta Crystallogr. 10, 86 (1957).

    Article  Google Scholar 

  33. A. Gangulee, G.C. Das, and M.B. Bever, Metall. Trans. 4, 2063 (1973).

    Article  CAS  Google Scholar 

  34. Y. Yuan, Y. Guan, D. Li, and N. Moelans, J. Alloys Compd. 661, 282 (2016).

    Article  CAS  Google Scholar 

  35. G. Zeng, S.D. McDonald, Q. Gu, Y. Terada, K. Uesugi, H. Yasuda, and K. Nogita, Acta Mater. 83, 357 (2015).

    Article  CAS  Google Scholar 

  36. V. Vuorinen, T. Laurila, T. Mattila, E. Heikinheimo, and J.K. Kivilahti, J. Electron. Mater. 36, 1355 (2007).

    Article  CAS  Google Scholar 

  37. A. Leineweber, S.L. Shang, and Z.K. Liu, Acta Mater. 86, 374 (2015).

    Article  CAS  Google Scholar 

  38. S. Ramos de Debiaggi, C. Deluque Toro, G.F. Cabeza, and A. Fernández Guillermet, J. Alloys Compd. 542, 280 (2012).

    Article  CAS  Google Scholar 

  39. L. Cheng, A. Boettger, T.H. de Keijser, and E.J. Mittemeijer, Scr. Metall. Mater. 24, 509 (1990).

    Article  CAS  Google Scholar 

  40. F.J.J. van Loo, Prog. Solid State Chem. 20, 47 (1990).

    Article  Google Scholar 

  41. T. Gressmann, A. Leineweber, and E.J. Mittemeijer, Philos. Mag. 88, 145 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Leineweber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wieser, C., Hügel, W., Walnsch, A. et al. Two-Phase η′ + η Region in Cu6Sn5 Intermetallic: Insight into the Order–Disorder Transition from Diffusion Couples. J. Electron. Mater. 49, 245–256 (2020). https://doi.org/10.1007/s11664-019-07643-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07643-3

Keywords

Navigation