Skip to main content
Log in

Effect of Thermomigration–Electromigration Coupling on Mass Transport in Cu Thin Films

  • TMS2019 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Self-induced temperature gradients produced due to passage of electric current through thin film interconnects with bends can be very large, making thermomigration an important mass transport mechanism, in addition to electromigration. Here, we study effects of thermomigration–electromigration coupling on mass transport in Cu films deposited on SiO2/Si substrate, as per the Blech configuration, with a W or Ta interlayer. We observed a slowly growing depletion zone at the anode in addition to a rapidly expanding depleted zone at the cathode. Moreover, we also observed that the extent of the depletion zone at the cathode varied non-monotonically with the inverse of the length of the sample. These seemingly “anomalous” observations are attributed to the coupling between thermomigration and electromigration, where thermomigration becomes dominant as the current density is increased, the sample length is decreased and the affinity between interlayer and the Cu film is weakened. The findings in this work are augmented by finite element modeling of thermomigration–electromigration coupling in Cu film. An overview of impact of these findings on fabrication of thin film device-level interconnects is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.B. Huntington and A.R. Grone, J. Phys. Chem. Solids 20, 76 (1961).

    Article  CAS  Google Scholar 

  2. J.R. Black, IEEE Trans. Electron. Dev. 16, 338 (1969).

    Article  CAS  Google Scholar 

  3. C.K. Hu, R. Rosenberg, and K.Y. Lee, Appl. Phys. Lett. 74, 2945 (1999).

    Article  CAS  Google Scholar 

  4. K.N. Tu, J. Appl. Phys. 94, 5451 (2003).

    Article  CAS  Google Scholar 

  5. C.M. Tan, G. Zhang, and Z. Gan, IEEE Trans. Dev. Mater. Reliab. 4, 450 (2004).

    Article  CAS  Google Scholar 

  6. I. Dutta, P. Kumar, and M.S. Bakir, JOM 63, 70 (2011).

    Article  CAS  Google Scholar 

  7. J.W. Nah, J.O. Suh, and K.N. Tu, J. Appl. Phys. 98, 013715 (2005).

    Article  Google Scholar 

  8. Y.-L. Shen, J. Vac. Sci. Technol. B 17, 2115 (1999).

    Article  CAS  Google Scholar 

  9. H.V. Nguyen, C. Salm, B. Krabbenborg, K. Weide-Zaage, J. Bisschop, A.J. Mouthaan, and F.G. Kuper, IEEE Annual International Reliability Physics Symposium (2004).

  10. C.J. Meechan and G.W. Lehman, J. Appl. Phys. 33, 634 (1962).

    Article  Google Scholar 

  11. C. Chen, H.-Y. Hsiao, Y.-W. Chang, F. Ouyang, and K.N. Tu, Mater. Sci. Eng. R 73, 85 (2012).

    Article  Google Scholar 

  12. G.J. van Gurp, P.J. de Waard, and F.J. du Chatenier, Appl. Phys. Lett. 45, 1054 (1984).

    Article  Google Scholar 

  13. A.T. Huang, A.M. Gusak, K.N. Tu, and Y.S. Lai, Appl. Phys. Lett. 88, 141911 (2006).

    Article  Google Scholar 

  14. N. Somaiah, D. Sharma, and P. Kumar, J. Phys. D: Appl. Phys. 49, 20LT01 (2016).

    Article  Google Scholar 

  15. N. Somaiah and P. Kumar, J. Appl. Phys. 124, 185102 (2018).

    Article  Google Scholar 

  16. N. Somaiah and P. Kumar, Phys. Rev. Appl. 10, 054052 (2018).

    Article  CAS  Google Scholar 

  17. N. Somaiah and P. Kumar, Nanotechnology. https://doi.org/10.1088/1361-6528/ab3d5c. (in Press).

    Article  Google Scholar 

  18. I.A. Blech, J. Appl. Phys. 47, 1203 (1976).

    Article  CAS  Google Scholar 

  19. D. Choi, C.S. Kim, D. Naveh, S. Chung, A.P. Warren, N.T. Nuhfer, M.F. Toney, K.R. Coffey, and K. Barmak, Phys. Rev. B 86, 045432 (2012).

    Article  Google Scholar 

  20. W. Steinhogl, G. Schindler, G. Steinlesberger, and M. Englehardt, Phys. Rev. B 66, 075414 (2002).

    Article  Google Scholar 

  21. I.A. Blech and C. Herring, Appl. Phys. Lett. 29, 131 (1976).

    Article  CAS  Google Scholar 

  22. I.A. Blech and K.L. Tai, Appl. Phys. Lett. 30, 387 (1977).

    Article  CAS  Google Scholar 

  23. I.A. Blech, Acta Mater. 46, 3717 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Science and Technology (DST), Government of India, for financial support (DSTO #1164 and #1526). The authors also thank Professor Chandan Srivastava and Dr. Rekha M. of the Indian Institute of Science, Bangalore, for help with obtaining TEM micrographs and their interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somaiah, N., Kumar, P. Effect of Thermomigration–Electromigration Coupling on Mass Transport in Cu Thin Films. J. Electron. Mater. 49, 96–108 (2020). https://doi.org/10.1007/s11664-019-07634-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07634-4

Keywords

Navigation