Synthesis and Characterization of Lead-Free (CH3)3SSnI3 1-D Perovskite

Abstract

We report on the preparation, crystal structure and spectral properties of the trimethylsulfonium tin triiodide perovskite, (CH3)3SSnI3. The air-sensitive lead-free perovskite compound is prepared by reacting the (CH3)3SI and SnI2 solid precursors in evacuated silica tubes at 100°C. According to powder x-ray diffraction and Rietveld analysis, (CH3)3SSnI3 crystallizes at room temperature in hexagonal symmetry and forms a 1D network of face-sharing [SnI6] octahedra along the c axis. UV–Vis reflectance and photoluminescence spectroscopies reveal a direct energy band gap of 2.85 eV accompanied by a weak luminescence signal. Multi-temperature Raman spectroscopy reveals a fully reversible structural phase transition just below 0°C related to the reduction of the unit cell symmetry. Comparison with the widely studied Cs-, CH3NH3- and (NH2)2CH-based 3D-perovskites that are commonly used in third generation solar cells confirms the higher stability of (CH3)3SSnI3. This is attributed to the beneficial role of the bulky trimethylsulfonium group in the ASnI3 structure.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. Lopez-Varo, J.A. Jiménez-Tejada, M. García-Rosell, S. Ravishankar, G. Garcia-Belmonte, J. Bisquert, and O. Almora, Adv. Energy Mater. 8, 1702772 (2018).

  2. 2.

    H.B. Kim, Y.J. Yoon, J. Jeong, J. Heo, H. Jang, J. Seo, B. Walker, and J.Y. Kim, Energy Environ. Sci. 10, 1950 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    G. Kieslich, S. Sun, and A.K. Cheetham, Chem. Sci. 5, 4712 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    L. Zhang, L. Xu, Q. Li, J. Su, and J. Li, Sol. Energy Mater. Sol. Cells 186, 349 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    J. Cao, J. Yin, S. Yuan, Y. Zhao, J. Li, and N. Zheng, Nanoscale 7, 9443 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    A. Kaltzoglou, C.C. Stoumpos, A.G. Kontos, G.K. Manolis, K. Papadopoulos, K.G. Papadokostaki, V. Psycharis, C.C. Tang, Y.-K. Jung, A. Walsh, M.G. Kanatzidis, and P. Falaras, Inorg. Chem. 56, 6302 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    A. Kaltzoglou, M.M. Elsenety, I. Koutselas, A.G. Kontos, K. Papadopoulos, V. Psycharis, C.P. Raptopoulou, D. Perganti, T. Stergiopoulos, and P. Falaras, Polyhedron 140, 67 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    M.M. Elsenety, A. Kaltzoglou, M. Antoniadou, I. Koutselas, A.G. Kontos, and P. Falaras, Polyhedron 150, 83 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    A. Kaltzoglou, M. Antoniadou, D. Perganti, E. Siranidi, V. Raptis, K. Trohidou, V. Psycharis, A.G. Kontos, and P. Falaras, Electrochim. Acta 184, 466 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    I. Chung, B. Lee, J. He, R.P.H. Chang, and M.G. Kanatzidis, Nature 485, 486 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Z. Zhao, F. Gu, Y. Li, W. Sun, S. Ye, H. Rao, Z. Liu, Z. Bian, and C. Huang, Adv. Sci. 4, 1700204 (2017).

  12. 12.

    T. Nguyen-Tran, N. Mai An, K. Duyen Nguyen, T. Duyen Nguyen, and T. Tu Truong, J. Sci. Adv. Mater. Devices 3, 471 (2018).

    Article  Google Scholar 

  13. 13.

    A.G. Kontos, A. Kaltzoglou, E. Siranidi, D. Palles, G.K. Angeli, M.K. Arfanis, V. Psycharis, Y.S. Raptis, E.I. Kamitsos, P.N. Trikalitis, C.C. Stoumpos, M.G. Kanatzidis, and P. Falaras, Inorg. Chem. 56, 84 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    W. Gao, C. Ran, J. Li, H. Dong, B. Jiao, L. Zhang, X. Lan, X. Hou, and Z. Wu, J. Phys. Chem. Lett. 9, 6999 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    E. Jokar, C.-H. Chien, A. Fathi, M. Rameez, Y.-H. Chang, and E.W.-G. Diau, Energy Environ. Sci. 11, 2353 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    W. Ke, P. Priyanka, S. Vegiraju, C.C. Stoumpos, I. Spanopoulos, C.M.M. Soe, T.J. Marks, M.-C. Chen, and M.G. Kanatzidis, J. Am. Chem. Soc. 140, 388 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    T. Roisnel, and J. Rodriguez-Carvajal, Fullprof, Version Sept. 2012, France.

  18. 18.

    P. Kubelka and F. Munk, Z. Tech. Phys. 12, 593 (1931).

    Google Scholar 

  19. 19.

    E. Walrafen, M.S. Hokmabadi, P.N. Kirshnan, S. Guha, and R.G. Murno, J. Chem. Phys. 79, 3609 (1983).

    CAS  Article  Google Scholar 

  20. 20.

    C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    D.H. Fabini, C.C. Stoumpos, G. Laurita, A. Kaltzoglou, A.G. Kontos, P. Falaras, M.G. Kanatzidis, and R. Seshadri, Angew. Chem. Int. Ed. 55, 15392 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    C. Lode, H. Krautscheid, and Z. Anorg, Allg. Chem. 627, 841 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S.G. Mhaisalkar, and N. Mathews, Adv. Mater. 26, 7122 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    M.E. Khan, J. Lee, S. Byeon, and Y-H Kim, Adv. Funct. Mater. 29, 1807620 (2019).

  25. 25.

    A. Vassilakopoulou, D. Papadatos, I. Zakouras, and I. Koutselas, J. Alloys Compd. 692, 589 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    M.D. Smith, B.L. Watson, R.H. Dauskardt, and H.I. Karunadasa, Chem. Mater. 29, 7083 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    J.W. Ypenburg, E. van Der Leij-Van Wirdum, and H. Gerding, Recl. Trav. Chim. Pays-Bas 90, 896 (1971).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

P. Falaras acknowledges financial support from European Union’s Horizon 2020 (Marie Curie Innovative Training Network MAESTRO/764787). M. Elsenety is financially supported by Science Achievement Scholarship of High Education Ministry of Egypt in cooperation with the Hellenic Ministry of Foreign Affairs for his PhD Scholarship. We also acknowledge support of this work by the project “Development of Materials and Devices for Industrial, Health, Environmental and Cultural Applications” (MIS 5002567) which is implemented under the “Action for the Strategic Development on the Research and Technological Sector”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Polycarpos Falaras.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaltzoglou, A., Manolis, G.K., Elsenety, M.M. et al. Synthesis and Characterization of Lead-Free (CH3)3SSnI3 1-D Perovskite. Journal of Elec Materi 48, 7533–7538 (2019). https://doi.org/10.1007/s11664-019-07591-y

Download citation

Keywords

  • Lead-free hybrid perovskite
  • solar cells
  • luminescence
  • phase transitions
  • vibrational properties