Advertisement

Performance Investigation of Mott-Insulator LaVO3 as a Photovoltaic Absorber Material

  • Himanshu DixitEmail author
  • Deepak Punetha
  • Saurabh Kumar Pandey
Article

Abstract

Mott insulators have recently been identified as potential solar energy conversion material due to their favorable parameters. In this paper, we have investigated the cell performance by exploring the photovoltaic properties of Mott Insulator LaVO3 (LVO). The LVO thin films were grown by the sol–gel technique followed by a sintering pathway under various processing conditions. We investigated the influence of processing parameters on the structural, optical and electrical properties of the films through different characterization techniques. A correlation between the material parameters with the device performance has been established to ensure LVO perovskite for photovoltaic applications. This analysis will aid researchers to realize Mott insulators as light absorber material.

Keywords

Thin film solar cell photovoltaic material Mott insulator oxide perovskites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are thankful to the characterization facilities carried out at Department of Physics, Material science, and Mechanical Engineering, IIT Patna.

References

  1. 1.
    N.O. Guldal, H.E. Figen, and S.Z. Baykara, Chem. Eng. J. 313, 1354 (2017).CrossRefGoogle Scholar
  2. 2.
    H. Zhang, M. Brahlek, X. Ji, S. Lei, J. Lapano, J.W. Freeland, V. Gopalan, and R.E. Herbert, ACS Appl. Mater. Interfaces. 9, 12556 (2017).CrossRefGoogle Scholar
  3. 3.
    M. Sola, Master’s degree thesis, Universitá di Bologna-Scuola di Scienze, Corso di LaureaMagistrale in Fisica (2015).Google Scholar
  4. 4.
    A. Giampietri, G. Drera, and L. Sangaletti, Adv. Mater. Interfaces 4, 1700144 (2017).CrossRefGoogle Scholar
  5. 5.
    H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).CrossRefGoogle Scholar
  6. 6.
    Y. Hotta, T. Susaki, and H.Y. Hwang, Phys. Rev. Lett. 99, 236805 (2007).CrossRefGoogle Scholar
  7. 7.
    L.F. Kourkoutis, Y. Hotta, T. Susaki, H.Y. Hwang, and D.A. Muller, Phys. Rev. Lett. 97, 256803 (2006).CrossRefGoogle Scholar
  8. 8.
    M. Takizawa, Y. Hotta, T. Susaki, Y. Ishida, H. Wadati, Y. Takata, K. Horiba, M. Matsunami, S. Shin, M. Yabashi, K. Tamasaku, Y. Nishino, T. Ishikawa, A. Fujimori, and H.Y. Hwang, Phys. Rev. Lett. 102, 236401 (2009).CrossRefGoogle Scholar
  9. 9.
    R.J.O. Mossanek, M. Abbate, T. Yoshida, A. Fujimori, Y. Yoshida, N. Shirakawa, H. Eisaki, S. Kohno, and F.C. Vicentin, Phys. Rev. B78, 075103 (2008).CrossRefGoogle Scholar
  10. 10.
    C. He, T.D. Sanders, M.T. Gray, F.J. Wong, V.V. Mehta, and Y. Suzuki, Phys. Rev. B 86, 081401 (2012).CrossRefGoogle Scholar
  11. 11.
    S. Tomimoto, S. Miyasaka, T. Ogasawara, H. Okamoto, and Y. Tokura, Phys. Rev. B 68, 035106 (2003).CrossRefGoogle Scholar
  12. 12.
    M. Jellite, J.-L. Rehspringer, M.A. Fazio, D. Muller, G. Schmerber, G. Ferblantier, S. Colis, A. Dinia, M. Sugiyama, A. Slaoui, D. Cavalcoli, and T. Fix, Sol. Energy 162, 1 (2018).CrossRefGoogle Scholar
  13. 13.
    L. Wang, Y. Li, A. Bera, C. Ma, F. Jin, K. Yuan, W. Yin, A. David, W. Chen, W. Wu, W. Prellier, S. Wei, and T. Wu, Phys. Rev. Appl. 3, 064015 (2015).CrossRefGoogle Scholar
  14. 14.
    S. Kumari, S. Paul, and S. Raj, Solid State Commun. 268, 20 (2017).CrossRefGoogle Scholar
  15. 15.
    T.T.M. Palstra, A.P. Ramirez, S.W. Cheong, B.R. Zegarski, P. Schiffer, and J. Zaanen, Phys. Rev. B 56, 5104 (1997).CrossRefGoogle Scholar
  16. 16.
    Z. Zhou, S. Yuan, J. Fan, Z. Hou, W. Zhou, Z. Du, and S. Wu, Nanoscale Res. Lett. 7, 652 (2012).CrossRefGoogle Scholar
  17. 17.
    T. Das, B.K. Das, K. Parashar, R. Kumar, H.K. Choudhary, A.V. Anupama, B. Sahoo, P.K. Sahoo, and S.K.S. Parashar, J. Mater. Sci.: Mater. Electron. 28, 13587 (2017).Google Scholar
  18. 18.
    G. Herrera, E. Chavira, J. Jiménez-Mier, A. Ordoñez, E. Fregoso-Israel, L. Baños, E. Bucio, J. Guzmán, O. Novelo, and C. Flores, J. Alloy. Compd. 479, 511 (2009).CrossRefGoogle Scholar
  19. 19.
    C.J. Jia, L.D. Sun, F. Luo, X.C. Jiang, L.H. Wei, and C.H. Yan, Appl. Phys. Lett. 84, 5305 (2004).CrossRefGoogle Scholar
  20. 20.
    I.C. Lekshmi, A. Gayen, and M.S. Hegde, J. Phys. Chem. Solids 66, 1647 (2005).CrossRefGoogle Scholar
  21. 21.
    H. Yuan, K. Wang, C. Wang, B. Zhou, K. Yang, J. Liu, and B. Zou, J. Phys. Chem. C 119, 8364 (2015).CrossRefGoogle Scholar
  22. 22.
    L.D. Tung, A. Ivanov, J. Schefer, M.R. Lees, G. Balakrishnan, and D. McK Paul, Phys. Rev. B 78, 054416 (2008).CrossRefGoogle Scholar
  23. 23.
    T.A.W. Beale, R.D. Johnson, Y. Joly, S.R. Bland, P.D. Hatton, L. Bouchenoire, C. Mazzoli, D. Prabhakaran, and A.T. Boothroyd, Phys. Rev. B 82, 024105 (2010).CrossRefGoogle Scholar
  24. 24.
    M. Reehuis, C. Ulrich, P. Pattison, M. Miyasaka, Y. Tokura, and B. Keimer, Eur. Phys. J. B 64, 27 (2008).CrossRefGoogle Scholar
  25. 25.
    Y. Ren, A.A. Nugroho, A.A. Menovsky, J. Strempfer, U. Rütt, F. Iga, T. Takabatake, and C.W. Kimball, Phys. Rev. B 67, 014107 (2003).CrossRefGoogle Scholar
  26. 26.
    Z. Ergönenc, B. Kim, P. Liu, G. Kresse, and C. Franchini, Phys. Rev. Mater. 2, 024601 (2018).CrossRefGoogle Scholar
  27. 27.
    M. De Raychaudhury, E. Pavarini, and O.K. Andersen, Phys. Rev. Lett. 99, 126402 (2007).CrossRefGoogle Scholar
  28. 28.
    M. Reehuis, C. Ulrich, P. Pattison, B. Ouladdiaf, M.C. Rheinstädter, M. Ohl, L.P. Regnault, M. Miyasaka, Y. Tokura, and B. Keimer, Phys. Rev. B 73, 094440 (2006).CrossRefGoogle Scholar
  29. 29.
    D. Punetha and S.K. Pandey, IEEE Trans. Electron Devices 66, 3560 (2019).CrossRefGoogle Scholar
  30. 30.
    M.J. Martínez-Lope, J.A. Alonso, M. Retuerto, and M.T. Fernández-Díaz, Inorg. Chem. 47, 2634 (2008).CrossRefGoogle Scholar
  31. 31.
    J. Varignon, N.C. Bristowe, E. Bousquet, and P. Ghosez, Sci. Reports 5, 15364 (2015).CrossRefGoogle Scholar
  32. 32.
    J. Varignon, M. Bibes, and A. Zunger, arXiv preprint arXiv:1901.00425 (2019).
  33. 33.
    J. He and C. Franchini, Phys. Rev. B 86, 235117 (2012).CrossRefGoogle Scholar
  34. 34.
    S. Miyasaka, Y. Okimoto, and Y. Tokura, J. Phys. Soc. Jpn. 71, 2086 (2002).CrossRefGoogle Scholar
  35. 35.
    D. Punetha, H. Dixit, and S.K. Pandey, J. Comput. Electron. 18, 300 (2019).CrossRefGoogle Scholar
  36. 36.
    H. Dixit, D. Punetha, and S.K. Pandey, Optik 179, 969 (2019).CrossRefGoogle Scholar
  37. 37.
    G. Sclauzero and C. Ederer, Phys. Rev. B 92, 235112 (2015).CrossRefGoogle Scholar
  38. 38.
    S. Miyasaka, Y. Okimoto, M. Iwama, and Y. Tokura, Phys. Rev. B 68, 100406 (2003).CrossRefGoogle Scholar
  39. 39.
    S. Miyasaka, J. Fujioka, M. Iwama, Y. Okimoto, and Y. Tokura, Phys. Rev. B 73, 224436 (2006).CrossRefGoogle Scholar
  40. 40.
    S. Miyasaka, S. Onoda, Y. Okimoto, J. Fujioka, M. Iwama, N. Nagaosa, and Y. Tokura, Phys. Rev. Lett. 94, 076405 (2005).CrossRefGoogle Scholar
  41. 41.
    M.N. Iliev, P. Silwal, B. Loukya, R. Datta, D.H. Kim, N.D. Todorov, N. Pachauri, and A. Gupta, J. Appl. Phys. 114, 033514 (2013).CrossRefGoogle Scholar
  42. 42.
    D. Punetha and S.K. Pandey, IEEE Sens. J. 19, 2450 (2018).CrossRefGoogle Scholar
  43. 43.
    L. Gasparov, T. Jegorel, L. Loetgering, S. Middey, and J. Chakhalian, J. Raman Spectrosc. 45, 465 (2014).CrossRefGoogle Scholar
  44. 44.
    B. Roberge, S. Jandl, A.A. Nugroho, T.T.M. Palstra, L.D. Tung, and G. Balakrishnan, J. Raman Spectrosc. 46, 1157 (2015).CrossRefGoogle Scholar
  45. 45.
    K. Shibuya, J. Tsutsumi, T. Hasegawa, and A. Sawa, Appl. Phys. Lett. 103, 021604 (2013).CrossRefGoogle Scholar
  46. 46.
    I. Vrejoiu, C. Himcinschi, L. Jin, C.-L. Jia, N. Raab, J. Engelmayer, R. Waser, R. Dittmann, and P.H.M. van Loosdrecht, APL Mater. 4, 046103 (2016).CrossRefGoogle Scholar
  47. 47.
    H.T. Zhang, L.R. Dedon, L.W. Martin, and R.E. Herbert, Appl. Phys. Lett. 106, 233102 (2015).CrossRefGoogle Scholar
  48. 48.
    W. Su, C. Li, H. Hao, J. Whelan, M. Barrett, and B. Glennon, J. Raman Spectrosc. 46, 1150 (2015).CrossRefGoogle Scholar
  49. 49.
    S.Y. Smolin, M.D. Scafetta, A.K. Choquette, M.Y. Sfeir, J.B. Baxter, and S.J. May, Chem. Mater. 28, 97 (2015).CrossRefGoogle Scholar
  50. 50.
    X. Zhang, Y. Zhang, X.M. Wang, X.X. An, C.P. Chen, and X.P. Jing, Jpn. J. Appl. Phys. 50, 101102 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Electronics Engineering DepartmentRajasthan Technical UniversityKotaIndia
  2. 2.Sensors and Optoelectronics Research Group (SORG), Department of Electrical EngineeringIIT PatnaPatnaIndia

Personalised recommendations