Skip to main content
Log in

FTIR and Mössbauer Spectroscopy Investigations of Ag/FexAl2−xO3 Nanocomposites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An investigation of Ag/(hematite-alumina) solid solutions (Ag/FexAl2−xO3, 0.5 ≤ x ≤ 2) was completed via x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform Infrared spectroscopy (FTIR) and Mössbauer spectroscopy. Results reveal that the materials obtained by combustion synthesis are multi-phase nanocomposites and silver metal is supported on hematite-rich and alumina-rich nanoparticles for x < 2. For the iron-rich hematite phase, the experimental results indicated a beginning transition to the superparamagnetic state. They also show that the distribution of iron and aluminum cations in the product phases strongly depends on the starting concentrations and that their compositions closely correspond to those of the equilibrium phase diagram at about 1250°C. Mössbauer signal intensities of samples with x = 0.5, 1.0 and 1.5 could consistently be explained by coexistence of phases of approximate composition Fe0.2Al1.8O3 and Fe1.8Al0.2O3 , which closely corresponds to the thermodynamic equilibrium phase diagram of Fe2O3-Al2O3 at about 1250°C. Finally, the Mössbauer spectra reveal line shape changes for the samples with x < 2 which are characteristic for the onset of superparamagnetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bantsis, M. Betsiou, A. Bourliva, T. Yioultsis, and C. Sikalidis, Ceram. Int. 38, 721 (2012).

    Article  CAS  Google Scholar 

  2. S. Bhagwat, S. Joshi, S.B. Ogale, G. Marest, A. Benyagoub, N. Mancoffre, and F. Thimon, J. Appl. Phys. 79, 4141 (1996).

    Article  CAS  Google Scholar 

  3. W. Wang, W. Liu, X. Yang, and Z. Xie, Ceram. Int. 38, 2851 (2012).

    Article  CAS  Google Scholar 

  4. L. Zhou, W. Zhou, J. Su, F. Luo, and D. Zhu, Ceram. Int. 38, 1077 (2012).

    Article  CAS  Google Scholar 

  5. S. Bid, A. Banerjee, S. Kumar, S.K. Pradhan, U. De, and D. Banerjee, J. Alloys Compd. 326, 292 (2001).

    Article  CAS  Google Scholar 

  6. R.J. Willey, H. Lai, and J.B. Peri, J. Catal. 130, 319 (1991).

    Article  CAS  Google Scholar 

  7. M. Niwa, K. Yagi, and Y. Murakami, Bull. Chem. Soc. Jpn 54, 975 (1981).

    Article  CAS  Google Scholar 

  8. A. Lycourghiotis and D. Vattis, React. Kinet. Catal. Lett. 18, 377 (1981).

    Article  CAS  Google Scholar 

  9. V.I. Kuznetsov, E.N. Yurchenko, M.T. Protasova, E.A. Taraban, O.P. Krivoruchko, and R.A. Buyanov, Phys. Status Solidi (a) 113, 359 (1989).

    Article  CAS  Google Scholar 

  10. M.C. Prieto, J.M.G. Amores, V.S. Escribano, and G. Busca, J. Mater. Chem. 4, 1123 (1994).

    Article  CAS  Google Scholar 

  11. J.L. McArdle and G.L. Messing, J. Am. Ceram. Soc. 76, 214 (1993).

    Article  CAS  Google Scholar 

  12. L.F. Cótica, A. Paesano Jr, S.C. Zanatta, S.N. de Medeiros, and J.B.M. da Cunha, J. Alloys Compd. 413, 265 (2006).

    Article  Google Scholar 

  13. P. Tartaj and J. Tartaj, Acta Mater. 50, 5 (2002).

    Article  CAS  Google Scholar 

  14. J. Kákoš, L. Bača, P. Veis, and L. Pach, J. Sol-Gel. Sci. Technol. 21, 167 (2001).

    Article  Google Scholar 

  15. International Centre for Diffraction Data, PDF 10-173 (α-Al2O3) and PDF 13-534 (α-Fe2O3).

  16. J.F. Bengoaa, A.M. Alvareza, A.E. Bianchib, G. Punteb, R.E. Vandenberghec, R.C. Mercaderb, and S.G. Marchettia, Mat. Chem. Phys. 123, 191 (2010).

    Article  Google Scholar 

  17. N. Mimura and M. Saito, Catal. Today 55, 173 (2000).

    Article  CAS  Google Scholar 

  18. G. Giecko, T. Borowiecki, W. Gac, and J. Kruk, Catal. Today 137, 403 (2008).

    Article  CAS  Google Scholar 

  19. N.R.E. Radwan, E.A. El-Sharkawy, and A.M. Youssef, Appl. Catal. A 281, 93 (2005).

    Article  CAS  Google Scholar 

  20. S. Kobayashi, S. Kaneko, M. Ohshima, H. Kurokawa, and H. Miura, Appl. Catal. A 417–418, 306 (2012).

    Article  Google Scholar 

  21. B.M. Abu-Zied, Appl. Catal. A 334, 234 (2008).

    Article  CAS  Google Scholar 

  22. G. Longworth: in Mössbauer Spectroscopy Applied to Inorganic Chemistry, G.J. Long (Ed.), Vol. I, p. 43. Plenum Press, New York (1984).

  23. K. Lagarec, D.G. Rancourt, Recoil-Mössbauer spectral analysis software for windows version 1.02, Department of Physics, University of Ottawa, (1998).

  24. W. Gessner, Anorg. Allgem Chemie 360, 247 (1968).

    Article  CAS  Google Scholar 

  25. T. A. Taha, S., Elrabaie, M. T. Attia, J. Mater. Sci. Mater. Electron., 29(21), 18493 (2018)

  26. M.H. Yao, R.J. Baird, F.W. Kunz, and T.E. Hoost, J. Catal. 166, 67 (1997).

    Article  CAS  Google Scholar 

  27. S. Zhan, D. Chen, X. Jiao, and S. Liu, J. Colloid Interface Sci. 308, 265 (2007).

    Article  CAS  Google Scholar 

  28. S. Krehula and S. Musić, J. Alloys Compd. 416, 284 (2006).

    Article  CAS  Google Scholar 

  29. B.T. Poe, P.F. McMillan, C.A. Angell, and R.K. Sato, Chem. Geol. 96, 333 (1992).

    Article  CAS  Google Scholar 

  30. M. Okuno, N. Zotov, M. Schmücker, H. Schneider, and J. Non-Cryst, Solids 351, 1032 (2005).

    CAS  Google Scholar 

  31. M. Ristić, E. De Grave, S. Musić, S. Popović, and Z. Orehovec, J. Mol. Struct. 834–836, 454 (2007).

    Article  Google Scholar 

  32. S. Musić, I. Czakó-Nagy, I. Salaj-Obelić, and N. Ljubešić, Mater. Lett. 32, 301 (1997).

    Article  Google Scholar 

  33. J.E. Iglesias and C.J. Serna, Miner. Petrogr. Acta 29A, 363 (1985).

    Google Scholar 

  34. M. Ristić and S. Musić, J. Alloys Compd. 425, 384 (2006).

    Article  Google Scholar 

  35. Y. Wang, A. Muramatsu, and T. Sugimoto, Colloid Surf. A: Physicochem. Eng. Aspects 134, 281 (1998).

    Article  CAS  Google Scholar 

  36. F. Menil, J. Phys. Chem. Solids 46, 763 (1985).

    Article  CAS  Google Scholar 

  37. O.C. Kistner and A.W. Sunyar, Phys. Rev. Lett. 4, 412 (1960).

    Article  CAS  Google Scholar 

  38. A. Muan and C.L. Gee, J. Am. Ceram. Soc. 39, 207 (1956).

    Article  CAS  Google Scholar 

  39. F.A. Elrefaie and W.W. Smeltzer, Metall. Trans. B 14, 85 (1983).

    Article  Google Scholar 

  40. R. Hansson, P.C. Hayes, and E. Jak, Metall. Mater. Trans. 35B, 633 (2004).

    Article  CAS  Google Scholar 

  41. M.A. Rhamdhani, T. Hidayat, P.C. Hayes, and E. Jak, Metall. Mater. Trans. 40B, 25 (2009).

    Article  CAS  Google Scholar 

  42. A.K. Ladavos and T.V. Bakas, React. Kinet. Catal. Lett. 73, 223 (2001).

    Article  CAS  Google Scholar 

  43. A. Cordier, A. Peigney, E. De Grave, E. Flahaut, and C. Laurent, J. Eur. Ceram. Soc. 26, 3099 (2006).

    Article  CAS  Google Scholar 

  44. L.F. Cotica, S.C. Zanatta, M.A. Rocha, I.A. Santos, A. Paesano Jr, J.B.M. da Cunha, and B. Hallouche, J. Appl. Phys. 95, 1307 (2004).

    Article  CAS  Google Scholar 

  45. M. Liu, H. Li, L. Xiao, W. Yu, Y. Lu, and Z. Zhao, J. Magn. Magn. Mater. 294, 294 (2005).

    Article  CAS  Google Scholar 

  46. W. Kündig, H. Bömmel, G. Constabaris, and R.H. Lindquist, Phys. Rev. 142, 327 (1966).

    Article  Google Scholar 

  47. P. Fielitz, G. Borchardt, S. Ganschow, and R. Bertram, Defect Diffusion Forum 323–325, 75 (2012).

    Article  Google Scholar 

  48. K. Hoshino and N.L. Peterson, J. Phys. Chem. Solids 46, 1247 (1985).

    Article  CAS  Google Scholar 

  49. C. Wert and C. Zener, J. Appl. Phys. 21, 5 (1950).

    Article  CAS  Google Scholar 

  50. R.J. Borg, G.J. Dienes, An Introduction to Solid State Diffusion, Academic Press Inc., Boston, Chap. XII, (1988).

Download references

Acknowledgments

We would like to thank Prof. Klaus-Dieter Becker, Institute of Physical and Theoretical Chemistry, Technische Universität Germany for providing the Mössbauer measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Mahmoud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M.H., Taha, T.A. FTIR and Mössbauer Spectroscopy Investigations of Ag/FexAl2−xO3 Nanocomposites. J. Electron. Mater. 48, 7396–7403 (2019). https://doi.org/10.1007/s11664-019-07568-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07568-x

Keywords

Navigation