Skip to main content

Advertisement

Log in

Effect of Cr Doping on Visible-Light-Driven Photocatalytic Activity of ZnO Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Visible–light response semiconductors have been recognized by many researchers as powerful photocatalysts due to their efficient utilization of solar energy. Herein, Cr-doped ZnO nanoparticles (Cr-ZnO NPs) with different Cr atomic percentages were synthesized via a facile sol–gel route and systematically investigated with respect to the photocatalytic degradation of recalcitrant organic contaminants under visible–light conditions. The crystal structure and morphology of materials were characterized by x-ray diffraction patterns and transmission electron microscopy. X-ray photoelectron spectroscopy was employed to confirm the presence of Cr3+ ions successfully incorporated into the ZnO lattice. UV–Vis diffuse reflectance spectroscopy and photoluminescence spectra revealed that Cr doping remarkably increased the absorption of ZnO NPs and charge carrier separation, resulting in improved photocatalytic degradation efficiency. In addition, a trapping experiment was conducted to identify the involvement of reactive radicals in the photocatalysis process, suggesting that photogenerated electrons play a predominant role in photocatalytic degradation of Cr-ZnO NPs.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.-J. Chang, T.-L. Yang, and Y.-C. Weng, J. Solid State Chem. 214, 101 (2014). https://doi.org/10.1016/j.jssc.2013.09.039.

    Article  CAS  Google Scholar 

  2. V. Krishna, W. Bai, Z. Han, A. Yano, A. Thakur, A. Georgieva, K. Tolley, J. Navarro, B. Koopman, and B. Moudgil, Sci. Rep. 8, 1894 (2018). https://doi.org/10.1038/s41598-018-19972-0.

    Article  CAS  Google Scholar 

  3. V.V. Pham, D.P. Bui, H.H. Tran, M.T. Cao, T.K. Nguyen, Y.S. Kim, and V.H. Le, RSC Adv. 8, 12420 (2018). https://doi.org/10.1039/c8ra01363b.

    Article  CAS  Google Scholar 

  4. V.V. Pham, T.H. Huy, N.X. Sang, C.M. Thi, and L.V. Hieu, J. Mater. Sci. 53, 3364 (2018). https://doi.org/10.1007/s10853-017-1762-6.

    Article  CAS  Google Scholar 

  5. P.V. Viet, B.T. Phan, D. Mott, S. Maenosono, T.T. Sang, C.M. Thi, and L.V. Hieu, J. Photochem. Photobiol. A Chem. 352, 106 (2018). https://doi.org/10.1016/j.jphotochem.2017.10.051.

    Article  CAS  Google Scholar 

  6. K.M. Lee, C.W. Lai, K.S. Ngai, and J.C. Juan, Water Res. 88, 428 (2016). https://doi.org/10.1016/j.watres.2015.09.045.

    Article  CAS  Google Scholar 

  7. A. Iqbal, A. Mahmood, T. Muhammad Khan, and E. Ahmed, Proc. Natl. Sci. Mater. 23, 64 (2013). https://doi.org/10.1016/j.pnsc.2013.01.010.

    Article  Google Scholar 

  8. M.R. Khodadadi, M.E. Olya, and A. Naeimi, Korean J. Chem. Eng. 33, 2018 (2016). https://doi.org/10.1007/s11814-016-0001-1.

    Article  CAS  Google Scholar 

  9. Y. Liu, J. Yang, Q. Guan, L. Yang, Y. Zhang, Y. Wang, B. Feng, J. Cao, X. Liu, Y. Yang, and M. Wei, J. Alloys Compd 486, 835 (2009). https://doi.org/10.1016/j.jallcom.2009.07.076.

    Article  CAS  Google Scholar 

  10. O. Ola and M.M. Maroto-Valer, J. Photochem. Photobiol. C Photochem. Rev. 24, 16 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.06.001.

    Article  CAS  Google Scholar 

  11. S.X. Nguyen, Q.M. Nguyen, T.H. Nguyen, T.T. Nguyen, and T.T. Tung, Semicond. Sci. Technol. 34, 025013 (2018). https://doi.org/10.1088/1361-6641/aaf820.

    Article  CAS  Google Scholar 

  12. W. Li, G. Wang, C. Chen, J. Liao, and Z. Li, Nanomater (2017). https://doi.org/10.3390/nano7010020.

    Article  Google Scholar 

  13. Y. Guo, S. Lin, X. Li, and Y. Liu, Appl. Surf. Sci. 384, 83 (2016). https://doi.org/10.1016/j.apsusc.2016.04.036.

    Article  CAS  Google Scholar 

  14. F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, and T. Uyar, Nanoscale 6, 10224 (2014). https://doi.org/10.1039/c4nr01887g.

    Article  CAS  Google Scholar 

  15. M. Pirhashemi, A. Habibi-Yangjeh, and S. Rahim Pouran, J. Int. Eng. Chem. 62, 1 (2018). https://doi.org/10.1016/j.jiec.2018.01.012.

    Article  CAS  Google Scholar 

  16. B.P. Nenavathu, S. Kandula, and S. Verma, RSC Adv. 8, 19659 (2018). https://doi.org/10.1039/c8ra02237b.

    Article  CAS  Google Scholar 

  17. C. Wu, L. Shen, Y.-C. Zhang, and Q. Huang, Mater. Lett. 65, 1794 (2011). https://doi.org/10.1016/j.matlet.2011.03.070.

    Article  CAS  Google Scholar 

  18. S. Kumar, N. Tiwari, S.N. Jha, S. Chatterjee, D. Bhattacharyya, and A.K. Ghosh, RSC Adv. 6, 107816 (2016). https://doi.org/10.1039/c6ra15685a.

    Article  CAS  Google Scholar 

  19. H. Yoo, M. Kim, C. Bae, S. Lee, H. Kim, T.K. Ahn, and H. Shin, J. Phys. Chem. C 118, 9726 (2014). https://doi.org/10.1021/jp4125588.

    Article  CAS  Google Scholar 

  20. R. Saleh and N.F. Djaja, Spectrochim Acta A Mol. Biomol. Spectrosc. 130, 581 (2014). https://doi.org/10.1016/j.saa.2014.03.089.

    Article  CAS  Google Scholar 

  21. J.P. Mathew, G. Varghese, and J. Mathew, IOP Conf. Ser. Mater. Sci. Eng. (2015). https://doi.org/10.1088/1757-899x/73/1/012065.

    Article  Google Scholar 

  22. D. Bresser, F. Mueller, M. Fiedler, S. Krueger, R. Kloepsch, D. Baither, M. Winter, E. Paillard, and S. Passerini, Chem. Mater. 25, 4977 (2013). https://doi.org/10.1021/cm403443t.

    Article  CAS  Google Scholar 

  23. T.A. Abdel-Baset, Y.W. Fang, B. Anis, C.G. Duan, and M. Abdel-Hafiez, Nanoscale Res. Lett. 11, 115 (2016). https://doi.org/10.1186/s11671-016-1332-x.

    Article  CAS  Google Scholar 

  24. S.J. Gilliland, J.A. Sans, J.F. Sánchez-Royo, G. Almonacid, B. García-Domene, A. Segura, G. Tobias, and E. Canadell, Phys. Rev. B (2012). https://doi.org/10.1103/physrevb.86.155203.

    Article  Google Scholar 

  25. O. Altintas Yildirim, H. Arslan, and S. Sönmezoğlu, Appl. Surf. Sci. 390, 111 (2016). https://doi.org/10.1016/j.apsusc.2016.08.069.

    Article  CAS  Google Scholar 

  26. F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdid, M.B. Said, A. Ghrabi, and R. Schneider, Mater Design 101, 309 (2016). https://doi.org/10.1016/j.matdes.2016.04.015.

    Article  CAS  Google Scholar 

  27. B. Wang, J. Iqbal, X. Shan, G. Huang, H. Fu, R. Yu, and D. Yu, Mater. Chem. Phys. 113, 103 (2009). https://doi.org/10.1016/j.matchemphys.2008.07.031.

    Article  CAS  Google Scholar 

  28. A. Meng, J. Xing, Z. Li, and Q. Li, ACS Appl. Mater. Interfaces 7, 27449 (2015). https://doi.org/10.1021/acsami.5b09366.

    Article  CAS  Google Scholar 

  29. S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, and D.P. Norton, J. Appl. Phys. 93, 1 (2003). https://doi.org/10.1063/1.1517164.

    Article  CAS  Google Scholar 

  30. B.K. Roberts, A.B. Pakhomov, V.S. Shutthanandan, and K.M. Krishnan, J. Appl. Phys. (2005). https://doi.org/10.1063/1.1847914.

    Article  Google Scholar 

  31. M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi, and A. Rouhi, Crit. Rev. Environ. Sci. Technol. (2018). https://doi.org/10.1080/10643389.2018.1487227.

    Article  Google Scholar 

  32. R. Ullah and J. Dutta, J. Hazard. Mater. 156, 194 (2008). https://doi.org/10.1016/j.jhazmat.2007.12.033.

    Article  CAS  Google Scholar 

  33. S. Kumar, S. Basu, B. Rana, A. Barman, S. Chatterjee, S.N. Jha, D. Bhattacharyya, N.K. Sahoo, and A.K. Ghosh, J. Mater. Chem. C 2, 481 (2014). https://doi.org/10.1039/c3tc31834f.

    Article  CAS  Google Scholar 

  34. M. MehediHassan, W. Khan, A. Azam, and A.H. Naqvi, Ind. Eng. Chem. 21, 283 (2015). https://doi.org/10.1016/j.jiec.2014.01.047.

    Article  CAS  Google Scholar 

  35. S.-S. Li and Y.-K. Su, RSC Adv. 9, 2941 (2019). https://doi.org/10.1039/c8ra10112d.

    Article  CAS  Google Scholar 

  36. E.M. Rodríguez, G. Márquez, M. Tena, P.M. álvarez, and F.J. Beltrán, Appl. Catal. B Environ. 178, 44 (2015). https://doi.org/10.1016/j.apcatb.2014.11.002.

    Article  CAS  Google Scholar 

  37. R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, and Y. Al-Douri, Ceram. Int. 39, 2283 (2013). https://doi.org/10.1016/j.ceramint.2012.08.075.

    Article  CAS  Google Scholar 

  38. J.H. Zheng, Q. Jiang, and J.S. Lian, Appl. Surf. Sci. 257, 5083 (2011). https://doi.org/10.1016/j.apsusc.2011.01.025.

    Article  CAS  Google Scholar 

  39. J. Das, S.K. Pradhan, D.R. Sahu, D.K. Mishra, S.N. Sarangi, B.B. Nayak, S. Verma, and B.K. Roul, Physica B 405, 2492 (2010). https://doi.org/10.1016/j.physb.2010.03.020.

    Article  CAS  Google Scholar 

  40. H. Zhou and Z. Li, Mater. Chem. Phys. 89, 326 (2005). https://doi.org/10.1016/j.matchemphys.2004.09.006.

    Article  CAS  Google Scholar 

  41. A. Murphy, Sol. Energy Mater. Sol. Cells 91, 1326 (2007). https://doi.org/10.1016/j.solmat.2007.05.005.

    Article  CAS  Google Scholar 

  42. N. Kamarulzaman, M.F. Kasim, and R. Rusdi, Nanoscale Res. Lett. 10, 1034 (2015). https://doi.org/10.1186/s11671-015-1034-9.

    Article  CAS  Google Scholar 

  43. B. Panigrahy, M. Aslam, and D. Bahadur, Nanotechnology 23, 115601 (2012). https://doi.org/10.1088/0957-4484/23/11/115601.

    Article  CAS  Google Scholar 

  44. Q. Liu, F. Wang, H. Lin, Y. Xie, N. Tong, J. Lin, X. Zhang, Z. Zhang, and X. Wang, Catal. Sci. Technol. 8, 4399 (2018). https://doi.org/10.1039/c8cy00994e.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to record special thanks to the CM Thi Laboratory for supporting facilities. This work was financially supported by Ho Chi Minh City University of Technology (HUTECH) under Grant No. 1421/QĐ-ĐKC, 2018. This revised manuscript is completed thanks to my daughter’s inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet Van Pham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, T.K., Van Doan, T., Tran, H.H. et al. Effect of Cr Doping on Visible-Light-Driven Photocatalytic Activity of ZnO Nanoparticles. J. Electron. Mater. 48, 7378–7388 (2019). https://doi.org/10.1007/s11664-019-07566-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07566-z

Keywords

Navigation