Skip to main content
Log in

Low Thermal Conductivity in Thermoelectric Oxide-Based Multiphase Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric oxide-based multiphase systems gain synergistic properties from different materials. Therefore, multiphase systems based on a thermoelectric oxide, combined with both a polymeric phase (Matrimid) and a highly electrically conducting phase (Ag, carbon black) have been investigated. Compared to single-phase porous Ca3Co4O9, the resulting composite materials showed a decreased electrical conductivity while reaching a high Seebeck coefficient of up to 200 μV/K as well as a 4 times lower thermal conductivity. The strongly enhanced phonon scattering in the multiphase system resulting in low thermal conductivity is an especially interesting concept to design thermoelectric multiphase materials. Additionally, Ioffe plots are revitalized to compare the resulting power factor and thermal properties of the composite materials. The significantly low thermal conductivity due to the heteromaterial interfaces in the composite materials especially underlines the potential of multiphase systems as thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. He and T.M. Tritt, Science 357, eaak9997 (2017).

    Article  Google Scholar 

  2. R.A. Kishore, A. Marin, C. Wu, A. Kumar, and S. Priya, Energy Harvesting—Materials, Physics, and System Design with Practical Examples (Lancaster: DEStech Publications, 2019).

    Google Scholar 

  3. W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, Appl. Energy 143, 1 (2015).

    Article  Google Scholar 

  4. H.U. Fuchs, Energy Harvest. Syst. 1, 1 (2014).

    Article  Google Scholar 

  5. A. Feldhoff, Energy Harvest. Syst. 2, 5 (2015).

    Google Scholar 

  6. A.F. Ioffe, Semiconductor Thermoelements, and Thermoelectric Cooling, 1st ed. (London: Info-search Ltd., 1957).

    Google Scholar 

  7. H.U. Fuchs, The Dynamics of Heat—A Unified Approach to Thermodynamics and Heat Transfer, 2nd ed. (New York: Springer, 2010).

    Google Scholar 

  8. G. Job and R. Rüffler, Physical Chemistry from a Different Angle, 1st ed. (Berlin: Springer, 2014).

    Google Scholar 

  9. H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, and M. Nil, Renew. Sustain. Energy Rev. 82, 4159 (2018).

    Article  CAS  Google Scholar 

  10. G. Tan, L.D. Zhao, and M.G. Kanatzidis, Chem. Rev. 116, 12123 (2016).

    Article  CAS  Google Scholar 

  11. S. Chen and Z. Ren, Mater. Today 16, 387 (2013).

    Article  CAS  Google Scholar 

  12. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen, and Z.F. Ren, Nano Lett. 11, 556 (2011).

    Article  CAS  Google Scholar 

  13. E.S. Toberer, A.F. May, and G.J. Snyder, Chem. Mater. 22, 624 (2010).

    Article  CAS  Google Scholar 

  14. J. Shuai, J. Mao, S. Song, Q. Zhang, G. Chen, and Z. Ren, Mater. Today Phys. 1, 74 (2017).

    Article  Google Scholar 

  15. M. Shikano and R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003).

    Article  CAS  Google Scholar 

  16. A.K. Królicka, M. Piersa, A. Mirowska, and M. Michalska, Ceram. Int. 44, 13736 (2018).

    Article  Google Scholar 

  17. A. Janotti and C.G. Van De Walle, Rep. Prog. Phys. 72, 126501 (2009).

    Article  Google Scholar 

  18. D.B. Zhang, B.P. Zhang, D.S. Ye, Y.C. Liu, and S. Li, J. Alloys Compd. 656, 784 (2016).

    Article  CAS  Google Scholar 

  19. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).

    Article  CAS  Google Scholar 

  20. R. Chetty, A. Bali, and R.C. Mallik, J. Mater. Chem. C 3, 12364 (2015).

    Article  CAS  Google Scholar 

  21. N. Wang, L. Han, H. He, N.H. Park, and K. Koumoto, Energy Environ. Sci. 4, 3676 (2011).

    Article  CAS  Google Scholar 

  22. A.K. Menon, O. Meek, A.J. Eng, and S.K. Yee, J. Appl. Polym. Sci. 134, 1 (2017).

    Google Scholar 

  23. C. Wan, R. Tian, M. Kondou, R. Yang, P. Zong, and K. Koumoto, Nat. Commun. 8, 1024 (2017).

    Article  Google Scholar 

  24. N. Toshima, Synth. Met. 225, 3 (2017).

    Article  CAS  Google Scholar 

  25. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 7, 85 (1997).

    Article  CAS  Google Scholar 

  26. L. Han, N. Van Nong, W. Zhang, L.T. Hung, T. Holgate, K. Tashiro, M. Ohtaki, N. Pryds, and S. Linderoth, RSC Adv. 4, 12353 (2014).

    Article  CAS  Google Scholar 

  27. A.M. Youssef, H.K. Farag, A. El-Kheshen, and F.F. Hammad, Silicon 10, 1225 (2018).

    Article  CAS  Google Scholar 

  28. N.S. Krasutskaya, A.I. Klyndyuk, L.E. Evseeva, and S.A. Tanaeva, Inorg. Mater. 52, 393 (2016).

    Article  CAS  Google Scholar 

  29. M. Bittner, L. Helmich, F. Nietschke, B. Geppert, O. Oeckler, and A. Feldhoff, J. Eur. Ceram. Soc. 37, 3909 (2017).

    Article  CAS  Google Scholar 

  30. S. Saini, H.S. Yaddanapudi, K. Tian, Y. Yin, D. Magginetti, and A. Tiwari, Sci. Rep. 7, 1 (2017).

    Article  Google Scholar 

  31. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  32. S.R. Elliot, The Physics and Chemistry of Solids (Chichester: Wiley, 1998).

    Google Scholar 

  33. E. Flage-Larsen and O. Prytz, Appl. Phys. Lett. 99, 20 (2011).

    Article  Google Scholar 

  34. A. Putatunda and D.J. Singh, Mater. Today Phys. 8, 49 (2019).

    Article  Google Scholar 

  35. G.S. Kumar, G. Prasad, and R.O. Pohl, J. Mater. Sci. 28, 4261 (1993).

    Article  CAS  Google Scholar 

  36. Y. Wang, Y. Sui, J. Cheng, X. Wang, J. Miao, Z. Liu, Z. Qian, and W. Su, J. Alloys Compd. 448, 1 (2008).

    Article  CAS  Google Scholar 

  37. M. Ito, T. Nagira, and S. Hara, J. Alloys Compd. 408–412, 1217 (2006).

    Article  Google Scholar 

  38. G. Zheng, X. Su, T. Liang, Q. Lu, Y. Yan, C. Uher, and X. Tang, J. Mater. Chem. A 3, 6603 (2015).

    Article  CAS  Google Scholar 

  39. C. Liu, F. Jiang, M. Huang, R. Yue, B. Lu, J. Xu, and G. Liu, J. Electron. Mater. 40, 648 (2011).

    Article  CAS  Google Scholar 

  40. R. Zuzok, A.B. Kaiser, W. Pukacki, and S. Roth, J. Chem. Phys. 95, 1270 (1991).

    Article  CAS  Google Scholar 

  41. K. Kato, K. Kuriyama, T. Yabuki, and K. Miyazaki, J. Phys. Conf. Ser. 1052, 012008 (2018).

    Article  Google Scholar 

  42. F. Kahraman, M.A. Madre, S. Rasekh, C. Salvador, P. Bosque, M.A. Torres, J.C. Diez, and A. Sotelo, J. Eur. Ceram. Soc. 35, 3835 (2015).

    Article  CAS  Google Scholar 

  43. Y. Wang, Y. Sui, J. Cheng, X. Wang, and W. Su, J. Alloys Compd. 477, 817 (2009).

    Article  CAS  Google Scholar 

  44. M. Culebras, A. Garcia-Barbera, J.F. Serrano-Claumarchirant, C.M. Gomez, and A. Cantarero, Synth. Met. 225, 103 (2017).

    Article  CAS  Google Scholar 

  45. D. Yoo, J. Kim, and J.H. Kim, Nano Res. 7, 717 (2014).

    Article  CAS  Google Scholar 

  46. N. Toshima, K. Oshima, H. Anno, T. Nishinaka, and S. Ichikawa, Adv. Mater. 27, 2246 (2015).

    Article  CAS  Google Scholar 

  47. M. Culebras, A.M. Igual-Muñoz, C. Rodríguez-Fernández, M.I. Gómez-Gómez, C. Gómez, and A. Cantarero, ACS Appl. Mater. Interfaces 9, 20826 (2017).

    Article  CAS  Google Scholar 

  48. B. Zheng, Y. Lin, J. Lan, and X. Yang, J. Mater. Sci. Technol. 30, 423 (2014).

    Article  CAS  Google Scholar 

  49. C. Liu, F. Jiang, M. Huang, B. Lu, R. Yue, and J. Xu, J. Electron. Mater. 40, 948 (2011).

    Article  CAS  Google Scholar 

  50. H. Pang, Y.Y. Piao, Y.Q. Tan, G.Y. Jiang, J.H. Wang, and Z.M. Li, Mater. Lett. 107, 150 (2013).

    Article  CAS  Google Scholar 

  51. H. Song, C. Liu, H. Zhu, F. Kong, B. Lu, J. Xu, J. Wang, and F. Zhao, J. Electron. Mater. 42, 1268 (2013).

    Article  CAS  Google Scholar 

  52. M. Culebras, C. Cho, M. Krecker, R. Smith, Y. Song, C.M. Gómez, A. Cantarero, and J.C. Grunlan, ACS Appl. Mater. Interfaces 9, 6306 (2017).

    Article  CAS  Google Scholar 

  53. C. Cho, K.L. Wallace, P. Tzeng, J.H. Hsu, C. Yu, and J.C. Grunlan, Adv. Energy Mater. 6, 1 (2016).

    Google Scholar 

  54. J. Wang, J.K. Carson, M.F. North, and D.J. Cleland, Int. J. Heat Mass Transf. 51, 2389 (2008).

    Article  CAS  Google Scholar 

  55. B. Geppert, A. Brittner, L. Helmich, M. Bittner, and A. Feldhoff, J. Electron. Mater. 46, 2356 (2017).

    Article  CAS  Google Scholar 

  56. T. Khosravi, S. Mosleh, O. Bakhtiari, and T. Mohammadi, Chem. Eng. Res. Des. 90, 2353 (2012).

    Article  CAS  Google Scholar 

  57. J. Ahmad and M.B. Hägg, Sep. Purif. Technol. 115, 190 (2013).

    Article  CAS  Google Scholar 

  58. Y. Wang, Y. Sui, J. Cheng, X. Wang, and W. Su, J. Phys. D Appl. Phys. 41, 045406 (2008).

    Article  Google Scholar 

  59. E.R. Jette and F. Foote, J. Chem. Phys. 3, 605 (1935).

    Article  CAS  Google Scholar 

  60. J. Fayos, J. Solid State Chem. 148, 278 (1999).

    Article  CAS  Google Scholar 

  61. Y.M. Iyazaki, M.O. Noda, T.O. Ku, M.K. Ikuchi, and Y.I. Shii, J. Phys. Soc. Jpn. 71, 491 (2002).

    Article  Google Scholar 

  62. C. Van Baarle, F.W. Gorter, and P. Winsemius, Physica 35, 223 (1967).

    Article  Google Scholar 

  63. G.W.C. Kaye and T.H. Laby, Tables of Physics and Chemical Constants, 13th ed. (London: Longmans, 1966).

    Google Scholar 

  64. C.-H. Lim, W.-S. Seo, S. Lee, Y.S. Lim, J.-Y. Kim, H.-H. Park, S.-M. Choi, K.H. Lee, and K. Park, J. Korean Phys. Soc. 66, 794 (2015).

    Article  CAS  Google Scholar 

  65. A. Feldhoff, M. Arnold, J. Martynczuk, T.M. Gesing, and H. Wang, Solid State Sci. 10, 689 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project Number 325156807.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mario Wolf or Armin Feldhoff.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, M., Menekse, K., Mundstock, A. et al. Low Thermal Conductivity in Thermoelectric Oxide-Based Multiphase Composites. J. Electron. Mater. 48, 7551–7561 (2019). https://doi.org/10.1007/s11664-019-07555-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07555-2

Keywords

Navigation