Skip to main content
Log in

Ellipsometric Investigations of Electronic Polarizability and Thermo-optic Coefficients of ZxMoO3 (Z = H+, Li+) Bronzes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have measured mass densities, thermo-optic coefficients, and electronic polarizability of MoO3 thin films and of HxMoO3 and LixMoO3 bronze thin films over the temperature range from 100 K to 373 K using ellipsometry. The mass densities of MoO3 and molybdenum bronzes with different concentrations (x) changed from 3.76 g/cm3 to 2.45 g/cm3 during the heating and cooling cycles. Thermo-optic coefficients (TOCs) or dn/dT and dk/dT values of the molybdenum bronzes were found to have anomalous dispersion in the heating cycles over the range 295–373 K. On the other hand, the values of dn/dT for MoO3 thin films and for ZxMoO3 bronzes were found to be negative and positive, respectively over the temperature range 100–295 K and were on the order of 10−4 K−1. The respective values of dk/dT were found to be positive and negative and were on the order of 10−4 K−1 in the same temperature range. A little increase in the values of TOCs for the molybdenum bronzes is due to small increase in electronic polarizability, which was calculated in the range from 8.20 to 8.22 × 10−24 cm3 over the temperature range 100–373 K. All these small values are due to creation of more amorphousness in the MoO3 structure during the cooling cycles. The n and k data and TOCs values of molybdenum bronzes are explained using analytical model. The reported ellipsometric data is also interpreted in terms of small-polarons and bipolarons using configurational coordinate model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Rao, K. Ravindranadh, A. Kasturi, and M.S. Shekhawat, Res. J. Recent Sci. 2, 67 (2013).

    Google Scholar 

  2. M. Hashem, H. Abbas, and A.E. Abdel-Ghany, Z. Phys. Chem. 218, 1259 (2004).

    Article  CAS  Google Scholar 

  3. R.S. Patil, M.D. Uplane, and P.S. Patil, Int. J. Electrochem. Sci. 3, 259 (2008).

    CAS  Google Scholar 

  4. J. Scarminio, A. Lourenco, and A. Gorenstein, Thin Solid Films 302, 66 (1997).

    Article  CAS  Google Scholar 

  5. A.K. Prasad, D.J. Kubinski, and P.I. Gouma, Sens. Actuators, B 93, 25 (2003).

    Article  CAS  Google Scholar 

  6. J.S.E.M. Svensson, D.K. Benson, and C.E. Tray, SPIE 1016, 19 (1988).

    Google Scholar 

  7. C.M. Lampert and C.G. Granqvist, SPIE 1S4 (Bellinghan: Optical Engineering Press, 1989).

    Google Scholar 

  8. T.S. Sian and G.B. Reddy, Appl. Surf. Sci. 236, 1 (2004).

    Article  CAS  Google Scholar 

  9. S.H. Lee, M.J. Seong, C.E. Tracy, A. Mascarenhas, J.R. Ritts, and S.K. Deb, Solid State 147, 133 (2002).

    Google Scholar 

  10. W. Li, F. Cheng, Z. Tao, and J. Chen, J. Phys. Chem. B 110, 119 (2006).

    Article  CAS  Google Scholar 

  11. V. Bhosle, A. Tiwari, and J. Narayan, J. Appl. Phys. 97, 083539 (2005).

    Article  CAS  Google Scholar 

  12. K. Gesheva, A. Szekeres, and T. Ivanova, Sol. Energy Mater. Sol. Cells 76, 563 (2003).

    Article  CAS  Google Scholar 

  13. S. Boyadzhiev, V. Lazarova, K. Makita, Y. Kotani, I. Yordanova, Y. Matsumura, and M. Rassovska, J. Surf. Sci. Nanotechnol. 7, 796 (2009).

    Article  CAS  Google Scholar 

  14. F.O. Arntz, R.B. Goldner, B. Morel, T.E. Hass, and K.K. Wong, J. Appl. Phys. 67, 3177 (1990).

    Article  CAS  Google Scholar 

  15. C.G. Granqvist, P.C. Lansaker, N.R. Mlyuka, G.A. Niklasson, and E. Avendano, Sol. Energy Mater. Sol. Cells 93, 2032 (2009).

    Article  CAS  Google Scholar 

  16. P.C. Kao, Z.H. Chen, H.E. Yen, T.H. Liu, and C.L. Huang, Jpn. J. Appl. Phys. 57, 03DA04 (2018).

    Article  Google Scholar 

  17. A. Manivel, G.J. Lee, C.Y. Chen, J.H. Chen, S.S. Ma, T.L. Horng, and J.J. Wu, Mater. Res. Bull. 62, 184 (2015).

    Article  CAS  Google Scholar 

  18. Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou, and J.J. Zhu, Cryst. Eng. Commun. 12, 3740 (2010).

    Article  CAS  Google Scholar 

  19. S. Bai, C. Chen, Y. Tian, S. Chen, R. Luo, D. Li, A. Chen, and C.C. Liu, Mater. Res. Bull. 64, 252 (2015).

    Article  CAS  Google Scholar 

  20. K. Khojier, H. Savaloni, and S. Zolghadr, Appl. Surf. Sci. 320, 315 (2014).

    Article  CAS  Google Scholar 

  21. J.J. Birtill and P.J. Dickens, J. Solid State Chem. 29, 367 (1979).

    Article  CAS  Google Scholar 

  22. N. Margalit, J. Electrochem. Soc. 121, 1460 (1974).

    Article  CAS  Google Scholar 

  23. J. Wang, K.C. Rose, and C.M. Lieber, J. Phys. Chem. B 103, 8405 (1999).

    Article  CAS  Google Scholar 

  24. G.R. Patzke, A. Michailovski, F. Krumeich, R. Nesper, J.D. Grunwaldt, and A. Baiker, Chem. Mater. 16, 1126 (2004).

    Article  CAS  Google Scholar 

  25. A.M. Taurino, A. Forleo, L. Francioso, and P. Siciliano, Appl. Phys. Lett. 88, 152111 (2006).

    Article  CAS  Google Scholar 

  26. Z. Hussain, Appl. Opt. 57, 5720 (2018).

    Article  CAS  Google Scholar 

  27. Z. Hussain, JOSA A 35, 817 (2018).

    Article  CAS  Google Scholar 

  28. T.M. McEvoy and K.J. Stevenson, Langmuir 19, 4316 (2003).

    Article  CAS  Google Scholar 

  29. T.S. Sian, G.B. Reddy, and S.M. Shivaprasad, Jpn. J. Appl. Phys. 43, 6248 (2004).

    Article  CAS  Google Scholar 

  30. A. Szekeres, T. Ivanova, and K. Gesheva, J. Solid State Electrochem. 7, 17 (2002).

    Article  CAS  Google Scholar 

  31. H.M. Martinez, J. Torres, L.D.L. Carreno, and M.E.R. Garcia, Mater. Charact. 75, 184 (2013).

    Article  CAS  Google Scholar 

  32. Z. Hussain, Ph.D. thesis, University of London (2007).

  33. Zahid Hussain, Appl. Opt. 3, 7112 (1999).

    Article  Google Scholar 

  34. R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light (Amsterdan: North-Holland, 1989).

    Google Scholar 

  35. F.L. McCrackin, E. Passaglia, R.R. Stromberg, and H.L. Steinberg, J. Res. A 67, 363 (1963).

    Google Scholar 

  36. S. Bosch and F. Monzonis, JOSA A 12, 1375 (1995).

    Article  Google Scholar 

  37. R.H. Muller, Advances in Electrochemistry and Electrochemical Engineering, Vol. 9 (New York: Wiley, 1973).

    Google Scholar 

  38. F.L. McCrackin, National Bureau of Standards (U. S) Tech. Note 479 (U. S. Government Printing Office, Washington, DC, 1969).

  39. H.I. Evans, Ph. D. Thesis, University of London (1987).

  40. M. Green and Z. Hussain, J. Appl. Phys. 74, 3451 (1993).

    Article  CAS  Google Scholar 

  41. J.W. Rabalais, R.J. Colton, and A.M. Guzman, Chem. Phys. Lett. 29, 131 (1974).

    Article  CAS  Google Scholar 

  42. R. Schollhorn, R. Kuhlmann, and J.O. Besenhard, Mater. Res. Bull. 11, 83 (1976).

    Article  Google Scholar 

  43. “Gmelin Handbook of Inorganic Chemistry, MOB3” (Springer, Berlin, 1987).

  44. N. Sotani, K. Eda, M. Sadamatu, and S. Takagi, Bull. Chem. Soc. Jpn 62, 903 (1989).

    Article  CAS  Google Scholar 

  45. R.C.T. Slade, T.K. Halstead, and P.G. Dickens, J. Solid State Chem. 34, 183 (1980).

    Article  CAS  Google Scholar 

  46. A.V. Powell, M.J. Pointon, and P.G. Dickens, J. Solid State Chem. 113, 109 (1994).

    Article  CAS  Google Scholar 

  47. K. Eda, J. Solid State Chem. 83, 292 (1989).

    Article  CAS  Google Scholar 

  48. M. Anne, D. Frichart, S. Derdour, and D. Tinet, J. Phys. France 49, 505 (1988).

    Article  CAS  Google Scholar 

  49. C. Ritter and W.M. Warmuth, J. Chem. Phys. 83, 6130 (1985).

    Article  CAS  Google Scholar 

  50. E. Canadall and M.H. Whangbo, Inorg. Chem. 27, 228 (1988).

    Article  Google Scholar 

  51. B. Schlasche and R. Schollhorn, Rev. Chim. Miner. 19, 534 (1982).

    CAS  Google Scholar 

  52. G. Travaglini and P. Wachter, Solid State Commun. 47, 217 (1983).

    Article  CAS  Google Scholar 

  53. C. Schlenker, J. Dumas, C. Escribe-Filippini, H. Guyot, J. Marcus, and G. Fourcaudot, Philos. Mag. B 52, 643 (1985).

    Article  CAS  Google Scholar 

  54. A.L. Pergament, V.P. Malinenko, L.A. Aleshina, E.L. Kazakova, and N.A. Kuldin, J. Exp. Phys. 2014, 951297 (2014).

    Article  Google Scholar 

  55. C. Julien and G.A. Nazri, Solid State Ionics 68, 111 (1994).

    Article  CAS  Google Scholar 

  56. H. Mutka, S. Bouffard, M. Sanquer, J. Dumas, and C. Schlenker, Mol. Cryst. Liq. Cryst. 121, 133 (1985).

    Article  CAS  Google Scholar 

  57. A.C. Cirillo, L. Ryan, B.C. Gerstein, and J.J. Fripiat, J. Chem. Phys. 73, 3060 (1980).

    Article  CAS  Google Scholar 

  58. G.M. Ramans, J. Gabrusenoks, A. Lusis, and A.A. Patmalnieks, J. Non Cryst. Solids 90, 637 (1987).

    Article  CAS  Google Scholar 

  59. S. Macis, J. Rezvani, I. Davoli, G. Cibin, B. Spataro, J. Scifo, L. Faillace, and A. Marcelli, Condens. Matter 4, 41 (2019).

    Article  Google Scholar 

  60. D. Tinet, P. Canesson, H. Estrade, and J.J. Fripiat, Solid State Commun. 41, 583 (1980).

    CAS  Google Scholar 

  61. S. Badilescu and V. Truang, Appl. Spectrosc. 47, 749 (1993).

    Article  CAS  Google Scholar 

  62. A. Borgschulte, O. Sambalova, R. Delmelle, S. Jenatsch, R. Hany, and F. Nuesch, Sci. Rep. 7, 40761 (2017).

    Article  CAS  Google Scholar 

  63. M. Born and E. Wolf, Principles of Optics (Cambridge: Cambridge University Press, 1999).

    Book  Google Scholar 

  64. R. Jacobson, Physics of Thin Films, Vol. 8, ed. G. Hass, M.H. Francombe, and R.W. Hoffman (New York: Academic, 1975), p. 51.

    Google Scholar 

  65. Z. Hussain, J. Mater. Res. 16, 2695 (2001).

    Article  CAS  Google Scholar 

  66. M.R. Tubbs, Phys. Status Solidi (a) 21, 253 (1974).

    Article  CAS  Google Scholar 

  67. S.K. Deb, Proc. R. Soc. Lond. A 304, 211 (1968).

    Article  Google Scholar 

  68. Z. Hussain, J. Appl. Phys. 91, 5745 (2002).

    Article  CAS  Google Scholar 

  69. S.H. Wemple and M.D. Domenico Jr, Phys. Rev. B 3, 1338 (1971).

    Article  Google Scholar 

  70. S. Chen and L.W. Wang, Phys. Rev. B 89, 014109 (2014).

    Article  CAS  Google Scholar 

  71. B. Dasgupta, Y. Ren, L.M. Wong, L. Kong, E.S. Tok, W.K. Chim, and S.Y. Chiam, J. Phys. Chem. C 119, 10592 (2015).

    Article  CAS  Google Scholar 

  72. R.N. Singh, A.K. George, and S. Arafin, J. Phys. D Appl. Phys. 39, 1220 (2006).

    Article  CAS  Google Scholar 

  73. E. Hecht, Optics, 4th ed. (New York: Addison Wesley, 2002).

    Google Scholar 

  74. E.S. Kang, J.Y. Bae, and B.S. Bae, J. Sol. Gel Sci. Technol. 26, 981 (2003).

    Article  CAS  Google Scholar 

  75. P.A. Arasu and R.V. William, J. Adv. Dielectr. 7, 1750011 (2017).

    Article  CAS  Google Scholar 

  76. P. Kumar, Mater. Sci. Appl. 3, 369 (2012).

    CAS  Google Scholar 

  77. Z. Hussain, ajeas 12, 90 (2019).

    Google Scholar 

  78. C.S. Hsu, C.C. Chan, H.T. Huang, C.H. Peng, and W.C. Hsu, Thin Solid Films 516, 4839 (2008).

    Article  CAS  Google Scholar 

  79. K. Bange and T. Gambke, Adv. Mater. 2, 10 (1990).

    Article  CAS  Google Scholar 

  80. P.G. Dickens, A.T. Short, and S.C. Baker, Solid State Ionics 28–30, 1294 (1988).

    Article  Google Scholar 

  81. V. Madhavi, P. Kondaiah, S.S. Rayudu, O.M. Hussain, and S. Uthanna, J. Mater. Express 3, 5 (2013).

    Google Scholar 

  82. A. Pardo and J. Torres, Thin Solid Films 520, 1709 (2012).

    Article  CAS  Google Scholar 

  83. M. Sato, H. Fujishita, S. Sato, S. Hoshino, and S. Hashino, J. Phys. C Solid State Phys. 19, 3059 (1986).

    Article  CAS  Google Scholar 

  84. N. Sotani, N. Yoshida, Y. Kawamoto, S. Kishimoto, and M. Hasegawa, Bull. Chem. Soc. Jpn 57, 3032 (1984).

    Article  CAS  Google Scholar 

  85. Y. Jiang, Z.G. Liu, X.X. Qu, X.J. Zhang, and X.Y. Zhou, Phys. Condens. Mater. 3, 7129 (1991).

    Article  CAS  Google Scholar 

  86. H. Peelaers, M.L. Chabinyc, and C.G. Van de Walle, Chem. Mater. 29, 2563 (2017).

    Article  CAS  Google Scholar 

  87. H.A. Tahini, X. Tan, S.N. Lou, J. Scott, R. Amal, Y.H. Ng, and S.C. Smith, ACS Appl. Mater. Interfaces. 8, 10911 (2016).

    Article  CAS  Google Scholar 

  88. R.K. Sadabad, S. Yazdani, T.D. Huan, Z. Cai, and M.T. Pettes, J. Phys. Chem. C 122, 18212 (2018).

    Article  CAS  Google Scholar 

  89. S. Bednarek and J. Adamowski, Acta Phys. Pol. A 80, 357 (1991).

    Article  CAS  Google Scholar 

  90. R. Gehlig, E. Salje, A.F. Carley, and M.W. Roberts, J. Solid State Chem. 49, 318 (1983).

    Article  CAS  Google Scholar 

  91. E. Iguchi and H. Miyagi, J. Phys. Chem. Solids 54, 403 (1993).

    Article  CAS  Google Scholar 

  92. E. Iguchi, N. Kubota, T. Nakamori, N. Yamamoto, and K.J. Lee, Phys. Rev. B 43, 8646 (1991).

    Article  CAS  Google Scholar 

  93. R. Gehlig and E. Salje, Philos. Mag. B 47, 229 (1983).

    Article  CAS  Google Scholar 

  94. P.W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  CAS  Google Scholar 

  95. F.P. Koffyberg and F.A. Benko, J. Non Cryst. 40, 7 (1980).

    Article  CAS  Google Scholar 

  96. O.F. Schirmer and E. Salje, J. Phys. C 13, L1067 (2000).

    Article  Google Scholar 

  97. V.K. Mukhomorov, Int. J. Math. Models Methods Appl. Sci. 9, 176 (2015).

    Google Scholar 

  98. O.F. Schirmer, Z. Phys. B 24, 235 (1976).

    Article  CAS  Google Scholar 

  99. S. Krishnakumar and C.S. Menon, Bull. Mater. Sci. 16, 187 (1993).

    Article  CAS  Google Scholar 

  100. S. Berthumeyrie, J.C. Badot, J.P.P. Ramos, O. Dubrunfaut, S. Bach, and P. Vermaut, J. Phys. Chem. C 114, 19803 (2010).

    Article  CAS  Google Scholar 

  101. H. Ding, H. Lin, B. Sadigh, and F. Zhou, Phys. Chem. C 118, 15565 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This piece of research was done in the EEE department at Imperial College London by private funding. The author would like to thank the staff and the technicians of the EEE laboratories for their help with the various fabrication techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahid Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, Z. Ellipsometric Investigations of Electronic Polarizability and Thermo-optic Coefficients of ZxMoO3 (Z = H+, Li+) Bronzes. J. Electron. Mater. 48, 7427–7440 (2019). https://doi.org/10.1007/s11664-019-07548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07548-1

Keywords

Navigation