Skip to main content
Log in

Exploring the Electronic Properties of Ribonucleic Acids Integrated Within a Schottky-Like Junction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Deoxyribonucleic acid (DNA), being the main biomolecule of life, has been studied extensively in terms of its electronic properties, charge transport mechanisms and potential use in nano-electronic devices. The ability of DNA to self-replicate, self-assemble and mediate charge transfer has made it an interesting molecule to multidisciplinary researchers. However, not much attention has been given to ribonucleic acid (RNA), which is an equally important biomolecule that shares some common features with DNA. Elucidation of RNA’s electronic behavior could provide more information regarding its electronic properties, potentially offering a new biomolecule for application in bioelectronics. In this work, RNA samples integrated within two metal electrodes were subjected to positive and negative bias potentials and their resulting current profiles were investigated. Interestingly, current rectification similar to electric field-induced semi-conductive behavior of conventional Schottky junctions was observed for all RNA samples tested, indicating highly characteristic RNA-specific Schottky profiles. A non-linear profile was observed from the current–voltage (IV) characteristics of gold (Au)-RNA-Au structures showing resemblance to metal-DNA structures investigated previously. Various solid-state parameters such as turn-on voltage, shunt resistance, series resistance and ideality factor were also calculated to further understand the biomaterial’s solid-state behavior. These results successfully demonstrated the exciting observation of the semi-conductive-like behavior of RNA which could be utilized as a tool in molecular electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Lee, O.Y. Kim, and J.Y. Lee, J. Ind. Eng. Chem. 20, 1198 (2014).

    Article  CAS  Google Scholar 

  2. D.D. Eley and D.I. Spivey, Trans. Faraday Soc. 58, 411 (1961).

    Article  Google Scholar 

  3. A. Aviram and M.A. Rathner, Chem. Phys. Lett. 29, 277 (1974).

    Article  CAS  Google Scholar 

  4. R.K. Gupta and V. Saraf, Curr. Appl. Phys. 9, 149 (2009).

    Article  Google Scholar 

  5. M. Taniguchi and T. Kawai, Physica E 33, 1 (2006).

    Article  CAS  Google Scholar 

  6. T.H. LaBean and H. Li, Nano Today 2, 26 (2007).

    Article  Google Scholar 

  7. N. Seeman, Mater. Today 6, 24 (2003).

    Article  CAS  Google Scholar 

  8. I. Kratochvilova, K. Kral, M. Buncek, A. Viskova, S. Nespurek, A. Kochalska, T. Todorciuc, M. Weiter, and B. Schneider, Biophys. Chem. 138, 3 (2008).

    Article  CAS  Google Scholar 

  9. I. Kartochvilova, T. Todorciuc, K. Kral, H. Nemec, M. Buncek, J. Sebera, S. Zalis, Z. Vokacova, V. Sychrovsky, L. Bendarova, P. Mojzes, and B. Schneider, J. Phys. Chem. B 114, 5196 (2010).

    Article  Google Scholar 

  10. A.R. Arnold, M.A. Grodick, and J.K. Barton, Cell Chem. Biol. 23, 183 (2016).

    Article  CAS  Google Scholar 

  11. J. Fritz, E.B. Cooper, S. Gaudet, P.K. Sorger, and S. Manalis, PNAS 99, 14142 (2002).

    Article  CAS  Google Scholar 

  12. C.Y. Tsai, T.L. Chang, LSh Kuo, and P.H. Chen, Appl. Phys. Lett. 89, 203902 (2006).

    Article  Google Scholar 

  13. S. Kilina, S. Tretiak, D.A. Yarotski, J.X. Zhu, N. Modine, A. Taylor, and A.V. Balatsky, J. Phys. Chem. C 111, 14541 (2007).

    Article  CAS  Google Scholar 

  14. D. Dragoman and M. Dragoman, Phys. Rev. E 80, 1 (2009).

    Google Scholar 

  15. B. Rafique, M. Iqbal, T. Mehmood, and M.A. Shaheen, Sens. Rev. 39, 34 (2018).

    Article  Google Scholar 

  16. M. Jang and J. Lee, ETRI J. 24, 455 (2002).

    Article  Google Scholar 

  17. O. Gulu and A. Turut, Mater. Sci.-Pol. 33, 593 (2015).

    Article  Google Scholar 

  18. V. Periasamy, N. Rizan, H.M.J. Al-Ta’ii, YSh Tan, H.A. Tajuddin, and M. Iwamoto, Sci. Rep. 6, 29879 (2016).

    Article  CAS  Google Scholar 

  19. N. Rizan, Y.Y. Chan, M.R. Niknam, J. Krishnasamy, S. Bhassu, G.Z. Hong, S. Devadas, M.S.M. Din, M.H. Tajjudin, R.Y. Othman, S.M. Phang, M. Iwamoto, and V. Periasamy, Sci. Rep. 8, 896 (2018).

    Article  Google Scholar 

  20. S.Z. Azmi, V. Vello, N. Rizan, J. Krishnasamy, S. Talebi, P. Gunaselvam, S.N.M. Iqbal, Y.Y. Chan, S.M. Phang, M. Iwamoto, and V. Periasamy, Appl. Phys. A 124, 559 (2018).

    Article  Google Scholar 

  21. D. Y. Zang and J. G. Grote, in OPMD IX conference proceedings, vol 6470, p. 64700A-1 (2007).

  22. H.M.J. Al-Ta’ii, V. Periasamy, and Y.M. Amin, J. Appl. Phys. 118, 114502 (2015).

    Article  Google Scholar 

  23. H.M.J. Al-Ta’ii, V. Periasamy, and Y.M. Amin, Sens. Actuators, B 232, 195 (2016).

    Article  Google Scholar 

  24. H.M.J. Al-Ta’ii, V. Periasamy, and Y.M. Amin, Sci. Rep. 6, 25519 (2016).

    Article  Google Scholar 

  25. H.M.J. Al-Ta’ii, V. Periasamy, and Y.M. Amin, PLoS ONE 11, e0145423 (2016).

    Article  Google Scholar 

  26. S. Clancy, Nat. Educ. 1, 102 (2008).

    Google Scholar 

  27. T.A. Cooper, L. Wan, and G. Dreyfuss, Cell 136, 777 (2009).

    Article  CAS  Google Scholar 

  28. O.S. Hajjawi, Cancer Cell Int. 15, 22 (2015).

    Article  Google Scholar 

  29. M. Huarte, Nat. Med. 21, 1253 (2015).

    Article  CAS  Google Scholar 

  30. P. Mu, S. Deng, and X. Fan, J. Clin. Cell Immunol. 6, 315 (2015).

    Google Scholar 

  31. K.Y. Hsiao, Y.C. Lin, S.K. Gubta, N. Chang, L. Yen, H.S. Sun, and S.J. Tsai, Cancer Res. 77, 2339 (2017).

    Article  CAS  Google Scholar 

  32. L.P. Ranum and J.W. Day, Trends Genet. 20, 506 (2004).

    Article  CAS  Google Scholar 

  33. L.S. Waters and G. Storz, Cell 136, 615 (2009).

    Article  CAS  Google Scholar 

  34. P. Poltronieri, B. Sun, and M. Mallardo, Curr. Genomics 16, 327 (2015).

    Article  CAS  Google Scholar 

  35. W.W. Grabow and L. Jaeger, Am. Chem. Soc. 47, 1871 (2014).

    CAS  Google Scholar 

  36. D. Bartel, Cell 116, 281 (2004).

    Article  CAS  Google Scholar 

  37. F. Scholz, Electroanalytical Methods: Guide to Experiments and Applications (Berlin: Springer, 2010), p. 11.

    Book  Google Scholar 

  38. E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts (Oxford: Clarendon, 1988).

    Google Scholar 

  39. S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1981).

    Google Scholar 

  40. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  CAS  Google Scholar 

  41. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature 403, 635 (2000).

    Article  CAS  Google Scholar 

  42. H.J. Leck, Theory of Semiconductor Devices (New York: Pergamon Press, 1976).

    Google Scholar 

  43. T. Kiuru, K. Dahlberg, J. Mallat, A. V. Raisanen, and T. Narhi, in IEEE conference proceedings (2011).

  44. A. Rockett, The Materials Science of Semiconductors (New York: Springer, 2007).

    Google Scholar 

  45. R.F. Schmitsdorf, T.U. Kampen, and W.J. Monch, J. Vac. Sci. Technol., B 15, 1221 (1997).

    Article  CAS  Google Scholar 

  46. W. Monch, J. Vac. Sci. Technol., B 17, 1867 (1999).

    Article  CAS  Google Scholar 

  47. R.T. Tung, Phys. Rev. B. 45, 13509 (1992).

    Article  CAS  Google Scholar 

  48. G.M. Vanalme, L. Goubert, R.L. van Meirhaeghe, F. Cardon, and V.P. Daele, Semicond. Sci. Technol. 14, 871 (1999).

    Article  CAS  Google Scholar 

  49. A.P. Godse and U.A. Bakshi, Electronic Devices and Circuits I (Pune: Technical Publications, 2008).

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from FRGS (FP038-2017A) and PPP (PG183-2016A) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vengadesh Periasamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, S., Daraghma, S., Subramaniam, S.R.T. et al. Exploring the Electronic Properties of Ribonucleic Acids Integrated Within a Schottky-Like Junction. J. Electron. Mater. 48, 7114–7122 (2019). https://doi.org/10.1007/s11664-019-07530-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07530-x

Keywords

Navigation