Effect of Concentration of Single-Wall Carbon Nanotubes (SWCNTs) in a SWCNTs/ZnO Nanorods Channel-Based Thin-Film Transistor

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Fabrication of three thin-film transistor devices by deposition of single-walled carbon nanotubes (SWCNTs) thin film over hydrothermally grown nanorods of zinc oxide (ZnO) on silicon dioxide (SiO2) layered n-type silicon is reported. In this architecture, SWCNTs/ZnO nanorods were used for the channel layer. The silicon dioxide deposited over silicon substrate was used as a dielectric. Three devices were prepared by varying the concentration of carbon nanotubes to investigate the effect on electrical properties of prepared thin-film transistors. XRD and EDX analysis was performed for the study of structural and elemental properties. Scanning electron microscopy (SEM) was used to examine the surface morphology of SWCNTs/ZnO nanorods. Transfer and output characteristics were studied using a Keithley SourceMeter. IV analysis revealed that an increase in the concentration of carbon nanotubes increased the mobility values and Ion/Ioff, but the threshold voltage was decreased.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    B. Mahar, C. Laslau, R. Yip, and Y. Sun, IEEE Sens. J. 7, 266 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    M. Xiao, S. Liang, J. Han, D. Zhong, J. Liu, Z. Zhang, and L. Peng, ACS Sens. 3, 749 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    C. Wang, J.C. Chien, K. Takei, T. Takahashi, J. Nah, A.M. Niknejad, and A. Javery, Nano Lett. 12, 1527 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    K. Zhu, Y. Wu, and M. Zhang, in Proceedings of the 15 th IEEE International Conference on Nanotechnology, 2015, p 897–900.

  5. 5.

    Y. Wu, X. Lin, and M.J. Zhang, Nanomater 2013, 64 (2013).

    Google Scholar 

  6. 6.

    X. Liu, C. Wang, and B. Cai, Nano Lett. 12, 3596 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    L.M. Peng, Z. Zhang, and S. Wang, Mater. Today 17, 433 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    K. Bikshalu, K.S.V. Reddy, S.C.P. Reddy, and V.K. Rao, Mater. Today Proc. 2, 4457 (2015).

    Article  Google Scholar 

  9. 9.

    Y.K. Park, W.Y. Rho, T. Mahmoudi, and Y.B. Hanhn, Chem. Commun. 50, 1050 (2014).

    Google Scholar 

  10. 10.

    F. Hennrich, W. Li, R. Fischer, S. Lebedkin, R. Krupke, and M.M. Kappes, ACS Nano 10, 1888 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    L. Minati, G. Speranza, I. Bernagozzi, S. Torrengo, L. Toniutti, B. Rossi, M. Ferrari, and A. Chiasera, J. Phys. Chem. C 114, 11068 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    P. Chen, Y. Fu, R. Aminirad, C. Wang, J. Zhang, K. Wang, K. Galatsis, and C. Zhou, Nano Lett. 11, 5301 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Y. Ono, S. Kishimoto, Y. Ohno, and T. Mizutani, Nanotechnolgy 21, 205202 (2010).

    Article  Google Scholar 

  14. 14.

    B. Chen, P. Zhang, L. Ding, J. Han, S. Qiu, Q. Li, Z. Zhang, and L.M. Peng, Nano Lett. 16, 5301 (2016).

    Google Scholar 

  15. 15.

    S. Gupta, C.N. Murthy, and C.R. Prabha, Int. J. Bio. Macromol. 108, 687 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    N. Yang, X. Chen, T. Ren, P. Zhang, and D. Yang, Sens. Actuators B 207, 690 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    F. Liu, J. Sun, C. Qian, X. Hu, H. Wu, Y. Huang, and J. Yang, Appl. Phys. A 122, 841 (2016).

    Article  Google Scholar 

  18. 18.

    A. Kumar, K. Bhargava, T. Dixit, K. Bhargava, I.A. Palani, and V. Singh, J. Mater. Sci. Mater. Electron. 28, 11202 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    P.P. Pal, E. Gilshteyn, H. Jiang, M. Timmermans, A. Kaskela, O.V. Tolochoko, M. Karppinen, M. Nisula, E.I. Kauppinen, and A.G. Nasibulin, Nanotechnology 27, 485709 (2016).

    Article  Google Scholar 

  20. 20.

    X. Liu, C. Wang, X. Xiao, J. Wang, S. Guo, and C. Jiang, App. Phys. Lett. 103, 223108 (2013).

    Article  Google Scholar 

  21. 21.

    A. Kumar, K. Bhargava, T. Dixit, I.A. Palani, and V. Singh, J. Electron. Mater. 45, 5606 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    M. Fathollahzadeh, M. Hosseini, M. Norouzi, A. Ebrahimi, M. Fathipour, M. Kolahdouz, and B. Haghighi, J. Solid State Electrochem. 22, 61 (2017).

    Article  Google Scholar 

  23. 23.

    J. Lee, T. Park, J. Lee, and W. Yi, IEEE Sens. J. 15, 260 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Y. Li, J. Gong, M. McCune, G. Hea, and Y. Deng, Synth. Metals 160, 499 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    E.S. Ates, S. Kucukyildiz, and H.E. Unalan, ACS Appl. Mater. Interfaces 4, 5142 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    M. Kumar, H. Jeong, and D. Lee, J. Mater. Sci. Mater. Electron. 29, 13058 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    G.H. Shen, A.R. Tandio, and F.C. Hong, Thin Solid Films 618, 100 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Y. Wu, M. Zhang, X. Xiao, and S. Zhang, in 2014 IEEE International Conference on Electron Devices and Solid-State Circuits, 2014, p 1–2.

  29. 29.

    Y. Cong, D. Han, J. Dong, S. Zhang, X. Zhang, and Y. Wang, Sci. Rep. 7, 1497 (2017).

    Article  Google Scholar 

  30. 30.

    N.A. Azarova, J.W. Owen, C.A. McLellan, M.A. Grimminger, E.K. Chapman, J.E. Anthony, and O.D. Jurchescu, Org. Electron. 11, 1960 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    B. Kim, M.L. Geier, M.C. Hersam, and A. Dodabalapur, Sci. Rep. 7, 39627 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    E.A. Villegas, C.M. Aldao, R. Savu, L.A. Ramajo, and R. Parra, Phys. Status Solidi A 215, 1800107 (2018).

    Article  Google Scholar 

  33. 33.

    H. Yan, Y. Mochizuki, T. Jo, and H. Okuzaki, J. Bioequiv Availab. 3, 069 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    M. Magliulo, B.R. Pistillo, M.Y. Mulla, S. Cotrone, N. Ditaranto, N. Cioffi, P. Favia, and L. Torsi, Plasma Process Polym. 10, 102 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    B. Sun and H. Sirringhaus, Nano Lett. 5, 2408 (2005).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamid Latif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Latif, H., Rasheed, S., Sattar, A. et al. Effect of Concentration of Single-Wall Carbon Nanotubes (SWCNTs) in a SWCNTs/ZnO Nanorods Channel-Based Thin-Film Transistor. Journal of Elec Materi 48, 7055–7062 (2019). https://doi.org/10.1007/s11664-019-07517-8

Download citation

Keywords

  • Carbon nanotubes
  • thin-film transistors
  • ZnO nanorods
  • nano-composites
  • channel layer