Abstract
Although the Fe/Ir(100) system has been extensively investigated, contradictory conclusions were drawn from different experimental and theoretical studies about its magnetic ground state. In this work, density functional theory calculations are performed for the adsorption of Fe on the Ir(100) surface with different coverages to resolve this contradiction. The obtained adsorption energy decreases as the coverage increases, which reflects the effect of repulsive interaction between the adsorbates. Antiferromagnetic (AFM) configuration is found to be more stable than the ferromagnetic (FM) configuration for the 0.50 and 1.00 monolayer (ML) coverages. Fe atoms start to form a body centered cubic (BCC) structure, with the basis of a lattice parameter of Ir and have a pseudomorphic growth. The FM configuration is found to be more stable than the AFM configuration for Fe bilayer on Ir(100) surface with c/a ≈ 0.53, which predicts a BCC Fe precursor due to the small lattice mismatch between Fe and Ir surface. The electronic properties predict that the reactivity of Ir surface decreases beyond Fe coverage of 0.50 ML since the d band center of 5d Ir shifts to the left of Fermi energy as Fe coverage increases.
Similar content being viewed by others
References
A. Alshammari, V.N. Kalevaru, and A. Martin, Catalysts 6, 97 (2016).
S.M. Aspera, R.L. Arevalo, K. Shimizu, R. Kishida, K. Kojima, N.H. Linh, H. Nakanishi, and H. Kasai, J. Electron. Mater. 46, 3776 (2017).
I.A. Erikat, Phys. Status Solidi B 253, 983 (2016).
M.D. Bhatt, G. Lee, and J.S. Lee, Energy Fuels 31, 1874 (2017).
D. Spišák and J. Hafner, Phys. Rev. B 70, 195426 (2004).
P. Ferriani, I. Turek, S. Heinze, G. Bihlmayer, and S. Blügel, Phys. Rev. Lett. 99, 187203 (2007).
Z. Tian, D. Sander, and J. Kirschner, Phys. Rev. B 79, 024432 (2009).
C.R. Kwawua, R. Tiaa, E. Adeia, N.Y. Dzadeb, and C.R.A. Catlowc, de Leeuw NH. Appl. Surf. Sci. 400, 293 (2017).
S. De, J. Zhang, R. Luque, and N. Yan, Energy Environ. Sci. 9, 3314 (2016).
R. Vanselow and R. Howe, Chemistry and Physics of Solid Surfaces VIII (Berlin: Springer, 2012), p. 316.
O.O. Brovko, P. Ruiz-Díaz, T.R. Dasa, and V.S. Stepanyuk, J. Phys. Condens. Matter 26, 093001 (2014).
J. Kudrnovský, F. Máca, I. Turek, and J. Redinger, Phys. Rev. B 80, 064405 (2009).
W.L. O’Brien and B.P. Tonner, Phys. Rev. B 52, 15332 (1995).
E. Snoeck, S. Frechengues, M.J. Casanove, C. Roucau, and S. Andrieu, J. Cryst. Growth 167, 143 (1996).
V. Blum, C. Rath, S. Müller, L. Hammer, K. Heinz, J.M. García, and J.E. Ortega, Phys. Rev. B 59, 15966 (1999).
H. Li, Y.S. Li, J. Quinn, D. Tian, J. Sokolov, F. Jona, and P.M. Marcus, Phys. Rev. B 42, 9195 (1990).
M. Friák, M. Šob, and V. Vitek, Phys. Rev. B 63, 052405 (2001).
Ch Hwang, A.K. Swan, and S.C. Hong, Phys. Rev. B 60, 14429 (1999).
C. Kittel, Introduction to Solid State Physics, 6th ed. (New York: Wiley, 1986).
K. He, L.J. Zhang, X.C. Ma, J.F. Jia, Q.K. Xue, and Z.Q. Qiu, Phys. Rev. B 72, 155432 (2005).
J. Araya-Pochet, C. Ballentine, and J.L. Erskine, Phys. Rev. B 38, 7846 (1988).
W. Zhong, G. Overney, and D. Tománek, Phys. Rev B 47, 95 (1993).
C. Liu and S.D. Bader, J. Appl. Phys. 67, 5758 (1990).
V. Martin, W. Meyer, C. Giovanardi, L. Hammer, K. Heinz, Z. Tian, D. Sander, and J. Kirschner, Phys. Rev. B 76, 1205418 (2007).
S. Andrieu, F.L. Razafindramisa, E. Snoeck, H. Renevier, A. Barbara, J.M. Tonnerre, M. Brunel, and M. Piecuch, Phys. Rev. B 52, 9938 (1995).
D. Spišák and J. Hafner, Surf. Sci. 546, 27 (2003).
B. Hammer and J.K. Nørsskov, Surf. Sci. 343, 211 (1995).
The US PP for iridium is taken from http://www.quantumespresso.org/pseudo.php.
J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gertsmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009).
I.A. Erikat, B.A. Hamad, and J.M. Khalifeh, Eur. Phys. J. B 67, 35 (2009).
M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989).
H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).
J.A. Rodriguez and D.W. Goodman, Science 257, 897 (1992).
S. Bhattacharjee, U.V. Waghmare, and S.C. Lee, Sci. Rep. 6, 35916 (2016).
M. Bode, E.Y. Vedmedenko, K. Von Bergmann, A. Kubetzka, P. Ferriani, S. Heinze, and R. Wiesendanger, Nat. Mater. 5, 477 (2006).
J.H. Larsen and I. Chorkendorff, Surf. Sci. Rep. 35, 163 (1999).
A. Vojvodic, J.K. Nørskov, and F. Abild-Pedersen, Top. Catal. 57, 25 (2014).
R. Wu and A. Freeman, Phys. Rev. B 45, 7532 (1992).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kassab, S., Erikat, I., Hamad, B. et al. First Principles Calculations of the Energetic, Structural, Electronic, and Magnetic Properties of Fe/Ir(100) System. J. Electron. Mater. 48, 6932–6939 (2019). https://doi.org/10.1007/s11664-019-07509-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-019-07509-8