Skip to main content
Log in

First Principles Calculations of the Energetic, Structural, Electronic, and Magnetic Properties of Fe/Ir(100) System

  • Electronic Materials for Renewable Energy Applications 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Although the Fe/Ir(100) system has been extensively investigated, contradictory conclusions were drawn from different experimental and theoretical studies about its magnetic ground state. In this work, density functional theory calculations are performed for the adsorption of Fe on the Ir(100) surface with different coverages to resolve this contradiction. The obtained adsorption energy decreases as the coverage increases, which reflects the effect of repulsive interaction between the adsorbates. Antiferromagnetic (AFM) configuration is found to be more stable than the ferromagnetic (FM) configuration for the 0.50 and 1.00 monolayer (ML) coverages. Fe atoms start to form a body centered cubic (BCC) structure, with the basis of a lattice parameter of Ir and have a pseudomorphic growth. The FM configuration is found to be more stable than the AFM configuration for Fe bilayer on Ir(100) surface with c/a ≈ 0.53, which predicts a BCC Fe precursor due to the small lattice mismatch between Fe and Ir surface. The electronic properties predict that the reactivity of Ir surface decreases beyond Fe coverage of 0.50 ML since the d band center of 5d Ir shifts to the left of Fermi energy as Fe coverage increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alshammari, V.N. Kalevaru, and A. Martin, Catalysts 6, 97 (2016).

    Article  Google Scholar 

  2. S.M. Aspera, R.L. Arevalo, K. Shimizu, R. Kishida, K. Kojima, N.H. Linh, H. Nakanishi, and H. Kasai, J. Electron. Mater. 46, 3776 (2017).

    Article  CAS  Google Scholar 

  3. I.A. Erikat, Phys. Status Solidi B 253, 983 (2016).

    Article  CAS  Google Scholar 

  4. M.D. Bhatt, G. Lee, and J.S. Lee, Energy Fuels 31, 1874 (2017).

    Article  CAS  Google Scholar 

  5. D. Spišák and J. Hafner, Phys. Rev. B 70, 195426 (2004).

    Article  Google Scholar 

  6. P. Ferriani, I. Turek, S. Heinze, G. Bihlmayer, and S. Blügel, Phys. Rev. Lett. 99, 187203 (2007).

    Article  CAS  Google Scholar 

  7. Z. Tian, D. Sander, and J. Kirschner, Phys. Rev. B 79, 024432 (2009).

    Article  Google Scholar 

  8. C.R. Kwawua, R. Tiaa, E. Adeia, N.Y. Dzadeb, and C.R.A. Catlowc, de Leeuw NH. Appl. Surf. Sci. 400, 293 (2017).

    Article  Google Scholar 

  9. S. De, J. Zhang, R. Luque, and N. Yan, Energy Environ. Sci. 9, 3314 (2016).

    Article  CAS  Google Scholar 

  10. R. Vanselow and R. Howe, Chemistry and Physics of Solid Surfaces VIII (Berlin: Springer, 2012), p. 316.

    Google Scholar 

  11. O.O. Brovko, P. Ruiz-Díaz, T.R. Dasa, and V.S. Stepanyuk, J. Phys. Condens. Matter 26, 093001 (2014).

    Article  Google Scholar 

  12. J. Kudrnovský, F. Máca, I. Turek, and J. Redinger, Phys. Rev. B 80, 064405 (2009).

    Article  Google Scholar 

  13. W.L. O’Brien and B.P. Tonner, Phys. Rev. B 52, 15332 (1995).

    Article  Google Scholar 

  14. E. Snoeck, S. Frechengues, M.J. Casanove, C. Roucau, and S. Andrieu, J. Cryst. Growth 167, 143 (1996).

    Article  CAS  Google Scholar 

  15. V. Blum, C. Rath, S. Müller, L. Hammer, K. Heinz, J.M. García, and J.E. Ortega, Phys. Rev. B 59, 15966 (1999).

    Article  CAS  Google Scholar 

  16. H. Li, Y.S. Li, J. Quinn, D. Tian, J. Sokolov, F. Jona, and P.M. Marcus, Phys. Rev. B 42, 9195 (1990).

    Article  CAS  Google Scholar 

  17. M. Friák, M. Šob, and V. Vitek, Phys. Rev. B 63, 052405 (2001).

    Article  Google Scholar 

  18. Ch Hwang, A.K. Swan, and S.C. Hong, Phys. Rev. B 60, 14429 (1999).

    Article  CAS  Google Scholar 

  19. C. Kittel, Introduction to Solid State Physics, 6th ed. (New York: Wiley, 1986).

    Google Scholar 

  20. K. He, L.J. Zhang, X.C. Ma, J.F. Jia, Q.K. Xue, and Z.Q. Qiu, Phys. Rev. B 72, 155432 (2005).

    Article  Google Scholar 

  21. J. Araya-Pochet, C. Ballentine, and J.L. Erskine, Phys. Rev. B 38, 7846 (1988).

    Article  CAS  Google Scholar 

  22. W. Zhong, G. Overney, and D. Tománek, Phys. Rev B 47, 95 (1993).

    Article  CAS  Google Scholar 

  23. C. Liu and S.D. Bader, J. Appl. Phys. 67, 5758 (1990).

    Article  CAS  Google Scholar 

  24. V. Martin, W. Meyer, C. Giovanardi, L. Hammer, K. Heinz, Z. Tian, D. Sander, and J. Kirschner, Phys. Rev. B 76, 1205418 (2007).

    Google Scholar 

  25. S. Andrieu, F.L. Razafindramisa, E. Snoeck, H. Renevier, A. Barbara, J.M. Tonnerre, M. Brunel, and M. Piecuch, Phys. Rev. B 52, 9938 (1995).

    Article  CAS  Google Scholar 

  26. D. Spišák and J. Hafner, Surf. Sci. 546, 27 (2003).

    Article  Google Scholar 

  27. B. Hammer and J.K. Nørsskov, Surf. Sci. 343, 211 (1995).

    Article  CAS  Google Scholar 

  28. The US PP for iridium is taken from http://www.quantumespresso.org/pseudo.php.

  29. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  30. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gertsmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  31. I.A. Erikat, B.A. Hamad, and J.M. Khalifeh, Eur. Phys. J. B 67, 35 (2009).

    Article  CAS  Google Scholar 

  32. M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989).

    Article  CAS  Google Scholar 

  33. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  34. J.A. Rodriguez and D.W. Goodman, Science 257, 897 (1992).

    Article  CAS  Google Scholar 

  35. S. Bhattacharjee, U.V. Waghmare, and S.C. Lee, Sci. Rep. 6, 35916 (2016).

    Article  CAS  Google Scholar 

  36. M. Bode, E.Y. Vedmedenko, K. Von Bergmann, A. Kubetzka, P. Ferriani, S. Heinze, and R. Wiesendanger, Nat. Mater. 5, 477 (2006).

    Article  CAS  Google Scholar 

  37. J.H. Larsen and I. Chorkendorff, Surf. Sci. Rep. 35, 163 (1999).

    Article  CAS  Google Scholar 

  38. A. Vojvodic, J.K. Nørskov, and F. Abild-Pedersen, Top. Catal. 57, 25 (2014).

    Article  CAS  Google Scholar 

  39. R. Wu and A. Freeman, Phys. Rev. B 45, 7532 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan Erikat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassab, S., Erikat, I., Hamad, B. et al. First Principles Calculations of the Energetic, Structural, Electronic, and Magnetic Properties of Fe/Ir(100) System. J. Electron. Mater. 48, 6932–6939 (2019). https://doi.org/10.1007/s11664-019-07509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07509-8

Keywords

Navigation