Low-Temperature Sintering and Enhanced Dielectric Properties of BaZr0.2Ti0.8O3-Based Y5V Ceramics with Li2CO3 to Reduce the Sintering Temperature

  • Yanjun Wang
  • Rong Ma
  • Xiaoting Zhang
  • Lili Zhao
  • Bin CuiEmail author


We synthesized BaTi0.8Zr0.2O3 (BZT)-based powders using the sol–gel method, and introduced Li2CO3 with a low melting point (723°C) as a source of the liquid phase to reduce the sintering temperature (Ts) and improve the dielectric properties of the BZT-based ceramics. The x-ray powder diffractometer patterns exhibited a perovskite structure in all samples. The scanning electron microscope images revealed that the sinterability of the BZT-based ceramics was improved by adding an appropriate amount (3.0 wt.%) of Li2CO3; Ts decreased from 1280°C to 1100°C. The BZT-based ceramics sintered at 1100°C with 3.0 wt.% Li2CO3 met the Y5V requirements, with good electrical properties: εmax = 17987, εr = 15950, and tan δ = 0.02. The results indicated that Li2CO3 can improve the dielectric properties and reduce the Ts of BZT-based ceramics. Our method therefore represents a less expensive approach for developing materials suitable for use in multilayer capacitors.


Sintering temperature density dielectric properties sol–gel method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the Shaanxi Province Natural Science Foundation Research Project (Grant No. 2016JZ006), the Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Laboratory of Se-enriched Food Development (Grant No. Se-2018B06), and the Shaanxi Light Optoelectronics Material Co., Ltd. (No. 2015610002001920) for funding our research.


  1. 1.
    J. Qi, Z. Gui, Y.L. Wang, Q. Li, and L. Li, J. Mater. Sci. Lett. 21, 405 (2002).CrossRefGoogle Scholar
  2. 2.
    X. Chou, J. Zhai, J. Sun, and X. Yao, Ceram. Int. 4, 911 (2008).CrossRefGoogle Scholar
  3. 3.
    J. Hong and H. Lu, J. Am. Ceram. Soc. 97, 2256 (2014).CrossRefGoogle Scholar
  4. 4.
    X. Zhang, Z. Yue, B. Peng, Z. Xie, L. Yuan, and J. Zhang, J. Am. Ceram. Soc. 97, 2921 (2014).CrossRefGoogle Scholar
  5. 5.
    Y.L. Wang, L.T. Li, J.Q. Qi, and Z. Gui, Ceram. Int. 28, 657 (2002).CrossRefGoogle Scholar
  6. 6.
    Y.C. Wu, J.S. Lee, H.Y. Lu, and C.L. Hu, J. Electroceram. 18, 13 (2007).CrossRefGoogle Scholar
  7. 7.
    K. Miao, X. Wang, D. Hu, Y. Wang, and J. Xiao, Ceram. Int. 43, 9099 (2017).CrossRefGoogle Scholar
  8. 8.
    J. Wang, S.L. Jiang, D. Jiang, J. Tian, Y. Li, and Y. Wang, Ceram. Int. 38, 5853 (2012).CrossRefGoogle Scholar
  9. 9.
    Y. Wang, K. Miao, and R. Ma, Ceram. Int. 42, 14627 (2016).CrossRefGoogle Scholar
  10. 10.
    Y. Wang, B. Cui, L. Zhang, Z. Hu, and Y. Wang, Ceram. Int. 40, 11681 (2014).CrossRefGoogle Scholar
  11. 11.
    H.S. Mohanty, T. Dam, H. Borkar, D.K. Pradhan, K.K. Mishra, A. Kumar, B. Sahoo, P.K. Kulriya, C. Cazorla, J.F. Scott, and D.K. Pradhan, J. Phys. Condens. Matter 31, 075401 (2019).CrossRefGoogle Scholar
  12. 12.
    H.S. Mohanty, A. Kumar, B. Sahoo, P.K. Kurliya, and D.K. Pradhan, J. Mater. Sci. Mater. 29, 6966 (2018).CrossRefGoogle Scholar
  13. 13.
    M. Valant, D. Suvorov, R.C. Pullar, K. Sarma, and N.M. Alford, J. Eur. Ceram. Soc. 26, 2777 (2006).CrossRefGoogle Scholar
  14. 14.
    J.J. Ruiz-Valdés, A.V. Gorokhovsky, and J.I. Escalante-García, J. Eur. Ceram. Soc. 24, 1505 (2004).CrossRefGoogle Scholar
  15. 15.
    H.I. Hsiang, C.S. His, C.C. Huang, and S.L. Fu, J. Alloys Compd. 459, 307 (2008).CrossRefGoogle Scholar
  16. 16.
    H. Sun, Y. Zhang, X. Liu, Y. Liu, and W. Chen, Ceram. Int. 41, 555 (2015).CrossRefGoogle Scholar
  17. 17.
    W.G. Yang, B.P. Zhang, N. Ma, and L. Zhao, J. Eur. Ceram. Soc. 32, 899 (2012).CrossRefGoogle Scholar
  18. 18.
    W.Y. Hee and K.J. Hyuk, Integr. Ferroelectr. 86, 59 (2006).CrossRefGoogle Scholar
  19. 19.
    L. Zhao, B.P. Zhang, and P.F. Zhou, J. Eur. Ceram. Soc. 35, 533 (2015).CrossRefGoogle Scholar
  20. 20.
    L. Zhao, B.P. Zhang, and P.F. Zhou, J. Am. Ceram. Soc. 97, 2164 (2014).CrossRefGoogle Scholar
  21. 21.
    G.H. Chen and Y. Yang, J. Mater. Sci. Mater. Electron. 24, 1012 (2012).CrossRefGoogle Scholar
  22. 22.
    Y.D. Hou, M.K. Zhu, H. Wang, B. Wang, C.S. Tian, and H. Yan, J. Eur. Ceram. Soc. 24, 3731 (2004).CrossRefGoogle Scholar
  23. 23.
    X. Chen, X. Ruan, K. Zhao, X. He, J. Zeng, and Y. Li, J. Alloys Compd. 632, 103 (2015).CrossRefGoogle Scholar
  24. 24.
    Y.D. Hou, L.M. Chang, M.K. Zhu, X.M. Song, and H. Yan, J. Appl. Phys. 102, 084507 (2007).CrossRefGoogle Scholar
  25. 25.
    J. Bian and Y. Ding, Mater. Res. Bull. 49, 245 (2014).Google Scholar
  26. 26.
    P. Wang, Y. Li, and Y. Lu, J. Eur. Ceram. Soc. 31, 2005 (2011).CrossRefGoogle Scholar
  27. 27.
    X. Liu, M. Zhu, Z. Chen, B. Fang, J. Ding, and X. Zhao, J. Alloys Compd. 613, 219 (2014).CrossRefGoogle Scholar
  28. 28.
    S.K. Ye, J.Y.H. Fuh, and L. Lu, Appl. Phys. Lett. 100, 1153 (2012).Google Scholar
  29. 29.
    V. Buscaglia, M.T. Buscaglia, M. Viviani, L. Mitoseriu, P. Nanni, and V. Trefiletti, J. Eur. Ceram. Soc. 26, 2889 (2006).CrossRefGoogle Scholar
  30. 30.
    Z. Sun, L. Li, H. Zheng, S. Yu, and D. Xu, Ceram. Int. 41, 12158 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yanjun Wang
    • 1
  • Rong Ma
    • 1
    • 2
  • Xiaoting Zhang
    • 1
  • Lili Zhao
    • 3
  • Bin Cui
    • 1
    Email author
  1. 1.Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials ScienceNorthwest UniversityXi’anPeople’s Republic of China
  2. 2.Faculty of Chemistry and Chemical EngineeringBaoji University of Arts and SciencesBaojiPeople’s Republic of China
  3. 3.School of Information Science and TechnologyNorthwest UniversityXi’anPeople’s Republic of China

Personalised recommendations