Skip to main content
Log in

The Combination of Bipolar Electrolytic and Galvanic Method to Synthesize CuPt Nano-Alloy Electrocatalyst for Direct Ethanol Fuel Cell

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

CuPt nano alloy-particles were successfully synthesized by a combination of the methods of bipolar electrolytic and galvanic replacement. Cu2O nanoparticles prepared by a bipolar electrolytic method were used as the sacrificial templates for galvanic replacement reactions with H2PtCl6 solutions. The size of Cu2O nanoparticles was optimized by changing the electrolytic parameters to obtain fine nanoparticles. SEM and TEM analyses showed that Cu2O nanoparticles were grown in a crystal shape with a grain size of about 100 nm. The XRD results indicated that Cu2O nanoparticles were grown in a face-centered cubic structured crystal. The effects of the amount of H2PtCl6 solution on the structure, morphology, composition and electrocatalysis of CuPt were investigated. The phase analysis by XRD showed the presence of CuPt crystalline phases with a rhomb-centered structure. The SEM images indicated that the crystalline shape of Cu2O was turned into a spherical shape with the size expanded to 140 nm after galvanic reaction. The absorption analysis showed that there was one absorption peak at a wavelength of 500 nm for Cu2O while no absorption peak was observed for CuPt alloys. Additionally, compositional analysis by EDX showed that the main components of the alloys were Cu and Pt. The presence of O on the samples indicated that the galvanic reactions were not complete. The cyclic voltammetry measurement showed that CuPt nano alloy-particles exhibit better ethanol oxidation in an alkali medium compared with bare Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B. Braunchweig, D. Hibbitts, M. Neurock, and A. Wieckowski, Catal. Today 202, 197 (2013).

    Article  Google Scholar 

  2. M.A.F. Akhairi and S.K. Kamarudin, Int. J. Hydrogen Energy 41, 4214 (2016).

    Article  Google Scholar 

  3. V.V. Pham, V.-T. Ta, and C. Sunglae, Int. J. Hydrogen Energy 42, 13192 (2017).

    Article  Google Scholar 

  4. Q. He, Y. Shen, K. Xiao, J. Xi, and X. Qiu, Int. J. Hydrogen Energy 41, 20709 (2016).

    Article  Google Scholar 

  5. D. Soundararajan, J.H. Park, K.H. Kim, and J.M. Ko, Curr. Appl. Phys. 12, 854 (2012).

    Article  Google Scholar 

  6. Q. Li, P. Xu, B. Zhang, G. Wu, H. Zhao, E. Fu, and H.L. Wang, Nanoscale 5, 7397 (2013).

    Article  Google Scholar 

  7. M. Huang, Y. Jiang, C. Jin, J. Ren, Z. Zhou, and L. Guan, Electrochim. Acta 125, 29 (2014).

    Article  Google Scholar 

  8. K.J. Andersson and I. Chorkendorff, Surf. Sci. 604, 1733 (2010).

    Article  Google Scholar 

  9. J. Maya-Cornejo, R. Carrera-Cerritos, D. Sebastián, J. Ledesma-García, L.G. Arriaga, A.S. Aricò, and V. Baglio, Int. J. Hydrogen Energy 42, 27919 (2017).

    Article  Google Scholar 

  10. M. Ammam and E. Bradley Easton, J. Power Sources 222, 79 (2013).

    Article  Google Scholar 

  11. K.D. Gilroy, P. Farzinpour, A. Sundar, R.A. Hughes, and S. Neretina, Chem. Mater. 26, 3340 (2014).

    Article  Google Scholar 

  12. A. Papaderakis, I. Mintsouli, J. Georgieva, and S. Sotiropoulos, Catalysts 7, 80 (2017).

    Article  Google Scholar 

  13. S. Bao, H.A.N. Zhu, P.A.N. Wang, M. Zou, M. Du, and M. Zhang, NANO 8, 1350062 (2013).

    Article  Google Scholar 

  14. V.M. Maksimović, L.J. Pavlović, M.G. Pavlović, and M.V. Tomić, J. Appl. Electrochem. 39, 2545 (2009).

    Article  Google Scholar 

  15. A.M. Awad, M.E. Aref, A.E. Rahman, and M.A. Rafea, J. Am. Sci. 9, 137 (2010).

  16. G. Orhan and G. Hapçı, Powder Technol. 201, 57 (2010).

    Article  Google Scholar 

  17. N. Sivashankar, S. Karthick, and N. Kawin, Int. J. Sci. Technol. Eng. 3, 262 (2016).

    Google Scholar 

  18. X. Le Guével, V. Trouillet, C. Spies, G. Jung, and M. Schneider, J. Phys. Chem. C 116, 6047–6051 (2012).

    Article  Google Scholar 

  19. F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, J. Phys. Chem. B 107, 4218 (2003).

    Article  Google Scholar 

  20. H.P. Singh, N. Gupta, S.K. Sharma, and R.K. Sharma, Colloids Surf. A 416, 43 (2013).

    Article  Google Scholar 

  21. Y. Liu, L. Chen, T. Cheng, H. Guo, B. Sun, and Y. Wang, J. Power Sources 395, 66 (2018).

    Article  Google Scholar 

  22. Y. Wang, S. Zou, and W.-B. Cai, Catalysts 5, 1507 (2015).

    Article  Google Scholar 

  23. M. González Pereira, M. Dávila Jiménez, M.P. Elizalde, A. Manzo-Robledo, and N. Alonso-Vante, Electrochim. Acta 49, 3917 (2004).

    Article  Google Scholar 

  24. G. Blyholder, J. Phys. Chem. 68, 2772 (1964).

    Article  Google Scholar 

  25. V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, and N.M. Markovic, Nat. Mater. 6, 241 (2007).

    Article  Google Scholar 

  26. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, and A. Nilsson, Nat.Chem. 2, 454 (2010).

    Article  Google Scholar 

  27. C. Wang, M. Chi, D. Li, D. Strmcnik, D. van der Vliet, G. Wang, V. Komanicky, K.C. Chang, A.P. Paulikas, D. Tripkovic, J. Pearson, K.L. More, N.M. Markovic, and V.R. Stamenkovic, J. Am. Chem. Soc. 133, 14396 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Hanoi National University of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Van Vinh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Vinh, P., Dung, D.D., Ngan, N.B. et al. The Combination of Bipolar Electrolytic and Galvanic Method to Synthesize CuPt Nano-Alloy Electrocatalyst for Direct Ethanol Fuel Cell. J. Electron. Mater. 48, 6176–6182 (2019). https://doi.org/10.1007/s11664-019-07494-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07494-y

Keywords

Navigation