Effect of Ni Doping on ZnO Nanorods Synthesized Using a Low-Temperature Chemical Bath

  • Thembinkosi Donald MalevuEmail author
  • Benard Samwel Mwankemwa
  • Mustafa A. M. Ahmed
  • Tshwafo Elias Motaung
  • Kamohelo George Tshabalala
  • Richard Opio Ocaya


The present study evaluates the effects of Ni doping of ZnO nanorods synthesized using the low-temperature chemical bath method. The article is motivated by the apparent variability in the literature which report contrasting results on the effect of Ni doping of the ZnO host matrix. The choice of method was decided by the accepted belief of its high reproducibility and accuracy. The concentration of Ni in the ZnO nanostructure host matrix is varied from 0%, 5%, 7.5% and 10% Ni. The products were characterized using several standard techniques. The various results are found to reinforce each other and show that the presence of Ni enters the host matrix as Ni2+ and alters the ZnO nanostructure dimensions and morphology significantly. This study provides direct spectroscopic evidence of the modification of the ZnO crystal structure by the incorporation of Ni. This article therefore provides much needed clarification of the mechanisms of local ZnO nanorod symmetry modification by Ni.


ZnO nanorods photoluminescence Raman properties XPS  low-temperature chemical bath method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to thank Dr. Mbuso Mlambo (Department of Physics, University of Pretoria) for the Raman spectroscopy, and the University of KwaZulu-Natal for the financial support through a UCDP grant.

Supplementary material

11664_2019_7490_MOESM1_ESM.doc (329 kb)
Supplementary material 1 (doc 329 KB)


  1. 1.
    T.D. Malevu, B.S. Mwankemwa, S.V. Motloung, K.G. Tshabalala, and R.O. Ocaya, Physica E 106, 127 (2019).CrossRefGoogle Scholar
  2. 2.
    J. Zhang, J. Guo, H. Xu, and B. Cau, ACS Appl. Mater. Interfaces 5, 7893 (2013).CrossRefGoogle Scholar
  3. 3.
    S. Kim, T. Kim, M. Kang, S.K. Kwak, T.W. Yoo, L.S. Park, I. Yang, S. Hwang, J.E. Lee, S.K. Kim, and S.W. Kim, J. Am. Chem. Soc. 134, 3804 (2012).CrossRefGoogle Scholar
  4. 4.
    S.A. Kumar and S.M. Chen, Anal. Lett. 41, 141 (2008).CrossRefGoogle Scholar
  5. 5.
    D. Panda and T.Y. Tseng, J. Mater. Sci. 48, 6849 (2013).CrossRefGoogle Scholar
  6. 6.
    R. Saravanan, K. Santhi, N. Sivakumar, V. Narayanan, and A. Stephen, Mater. Charact. 67, 10 (2012).CrossRefGoogle Scholar
  7. 7.
    J. Li, H. Fan, and X. Jia, J. Phys. Chem. C 114, 14684 (2013).CrossRefGoogle Scholar
  8. 8.
    A.K. Rana, Y. Kumar, P. Rajput, S.N. Jha, D. Bhattacharyya, and P.M. Shirage, ACS Appl. Mater. Interfaces 9, 7691 (2017).CrossRefGoogle Scholar
  9. 9.
    S. Rajeh, A. Mhamdi, K. Khirouni, M. Amlouk, and S. Guermazi, Opt. Laser Technol. 69, 113 (2015).CrossRefGoogle Scholar
  10. 10.
    D. Iskenderoglu and H. Güney, Ceram. Int. 43, 16593 (2017).CrossRefGoogle Scholar
  11. 11.
    A.K. Rana, P. Bankar, Y. Kumar, M.A. More, D.J. Late, and P.M. Shirage, RSC Adv. 6, 104318 (2016).CrossRefGoogle Scholar
  12. 12.
    S. Fabbiyola, V. Sailaja, L.J. Kennedy, M. Bououdina, and J.J. Vijaya, J. Alloys Compd. 694, 522 (2017).CrossRefGoogle Scholar
  13. 13.
    S.K. Mandal, A.K. Das, T.K. Nath, and D. Karmakar, Appl. Phys. Lett. 89, 144105 (2006).CrossRefGoogle Scholar
  14. 14.
    G. Srinet, R. Kumar, and V. Sajal, Ceram. Int. 39, 7557 (2013).CrossRefGoogle Scholar
  15. 15.
    B.K. Das, T. Das, K. Parashar, A. Thirumurugan, and S.K.S. Parashar, J. Mater. Sci. Mater. Electron. 28, 15127 (2017).CrossRefGoogle Scholar
  16. 16.
    C.H. Xia, C.G. Hu, C.H. Hu, Z. Ping, and F. Wang, Physica E 42, 2086 (2010).CrossRefGoogle Scholar
  17. 17.
    M. Podlogar, A. Rečnik, G. Yilmazoglu, I.Ö. Özer, M. Mazaj, E. Suvaci, and S. Bernik, Ceram. Int. 42, 15358 (2016).CrossRefGoogle Scholar
  18. 18.
    S. Ghaziof and W. Gao, Appl. Surf. Sci. 311, 635 (2014).CrossRefGoogle Scholar
  19. 19.
    M.M. Abou-Krisha, F.H. Assaf, O.K. Alduaij, and A.A. Eissa, Trans. Indian Inst. Met. 70, 31 (2017).CrossRefGoogle Scholar
  20. 20.
    A. Monshi, M.R. Foroughi, and M.R. Monshi, World J. Nano Sci. Eng. 2, 154 (2012).CrossRefGoogle Scholar
  21. 21.
    D.Y. Inamdar, A.D. Lad, A.K. Pathak, I. Dubenko, N. Ali, and S. Mahamuni, J. Phys. Chem. C 114, 1451 (2010).CrossRefGoogle Scholar
  22. 22.
    P. Bindu and S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014).CrossRefGoogle Scholar
  23. 23.
    A.B. Djurišić, Y.H. Leung, W.C. Choy, K.W. Cheah, W. Chan, and W. Chan, Appl. Phys. Lett. 84, 2635 (2004).CrossRefGoogle Scholar
  24. 24.
    W. Dai, X. Pan, S. Chen, C. Chen, W. Chen, H. Zhang, and Z. Ye, RSC Adv. 5, 6311 (2015).CrossRefGoogle Scholar
  25. 25.
    K.J. Kim and Y.R. Park, Appl. Phys. Lett. 81, 1420 (2002).CrossRefGoogle Scholar
  26. 26.
    C. Singh and E. Panda, RSC Adv. 6, 48910 (2016).CrossRefGoogle Scholar
  27. 27.
    T.D. Malevu and R.O. Ocaya, Int. J. Electrochem. Sci. 10, 4097 (2015).Google Scholar
  28. 28.
    J.J. Beltrán, C.A. Barrero, and A. Punnoose, Phys. Chem. Chem. Phys. 17, 15284 (2015).CrossRefGoogle Scholar
  29. 29.
    C.A. Arguello, D.L. Rousseau, and S.P.D.S. Porto, Phys. Rev. 181, 1351 (1969).CrossRefGoogle Scholar
  30. 30.
    K. Samanta, P. Bhattacharya, and R.S. Katiyar, J. Appl. Phys. 108, 11 (2010).CrossRefGoogle Scholar
  31. 31.
    M. Rajalakshmi, A.K. Arora, B.S. Bendre, and S. Mahamuni, J. Appl. Phys. 87, 2445 (2000).CrossRefGoogle Scholar
  32. 32.
    D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y.K. Mishra, and R. Adelung, Adv. Mater. 26, 1541 (2014).CrossRefGoogle Scholar
  33. 33.
    V. Russo, M. Ghidelli, P. Gondoni, C.S. Casari, and A.B. Li, J. Appl. Phys. 115, 7 (2014).CrossRefGoogle Scholar
  34. 34.
    S. Kumar, K. Asokan, R.K. Singh, S. Chatterjee, D. Kanjilal, and A.K. Ghosh, J. Appl. Phys. 114, 1 (2013).Google Scholar
  35. 35.
    G.H. Mhlongo, D.E. Motaung, S.S. Nkosi, H.C. Swart, G.F. Malgas, K.T. Hillie, and B.W. Mwakikunga, Appl. Surf. Sci. 293, 62 (2014). Scholar
  36. 36.
    B.S. Mwankemwa, F.J. Nambala, F. Kyeyune, T.T. Hlatshwayo, J.M. Nel, and M. Diale, Mater. Sci. Semicond. Proc. 71, 209 (2017).CrossRefGoogle Scholar
  37. 37.
    M.A.M. Ahmed, B.S. Mwankemwa, E. Carleschi, B.P. Doyle, W.E. Meyer, and J.M. Nel, Mater. Sci. Semicond. Proc. 79, 53 (2018).CrossRefGoogle Scholar
  38. 38.
    D.E. Motaung, G.H. Mhlongo, S.S. Nkosi, G.F. Malgas, B.W. Mwakikunga, E. Coetsee, H.C. Swart, H.M.I. Abdallah, T. Moyo, and S.S. Ray, ACS Appl. Mater. Interfaces 6, 8981 (2014).CrossRefGoogle Scholar
  39. 39.
    S. Das, A. Bandyopadhyay, P. Saha, D. Sukhen, and S. Sutradhar, J. Alloys Compd. 731, 1 (2018).CrossRefGoogle Scholar
  40. 40.
    S. Das, A. Bandyopadhyay, S. Das, D. Das, and S. Sutradhar, J. Alloys Compd. 731, 591 (2018).CrossRefGoogle Scholar
  41. 41.
    A. Chanda, S. Gupta, M. Vasundhara, S.R. Joshi, G.R. Mutta, and J. Singh, RSC Adv. 7, 50527 (2017).CrossRefGoogle Scholar
  42. 42.
    P. Dhiman, K.M. Batoo, R.K. Kotnala, J. Chand, and M. Singh, Appl. Surf. Sci. 287, 287 (2013).CrossRefGoogle Scholar
  43. 43.
    C. Liu, C. Li, K. Ahmed, Z. Mutlu, C.S. Ozkan, and M. Ozkan, Sci. Rep. 6, 1 (2016).CrossRefGoogle Scholar
  44. 44.
    R. Yousefi, CrystEngComm 17, 2698 (2015).CrossRefGoogle Scholar
  45. 45.
    B. Pal, D. Sarkar, and P.K. Giri, Appl. Surf. Sci. 356, 804 (2015).CrossRefGoogle Scholar
  46. 46.
    R.S. Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, and Y. Hayakawa, Chem. Phys. Lett. 689, 92 (2017).CrossRefGoogle Scholar
  47. 47.
    M. Wang, F. Ren, G. Cai, Y. Liu, S. Shen, and L. Guo, Nano Res. 7, 353 (2014).CrossRefGoogle Scholar
  48. 48.
    I.G. Morozov, O.V. Belousova, D. Ortega, M.K. Mafina, and M.V. Kuznetcov, J. Alloys Compd. 633, 237 (2015).CrossRefGoogle Scholar
  49. 49.
    A. Hezam, K. Namratha, Q.A. Drmosh, B.N. Chandrashekar, K.K. Sadasivuni, Z.H. Yamani, C. Cheng, and K. Byrappa, CrystEngComm 19, 3299 (2017).CrossRefGoogle Scholar
  50. 50.
    X. Cai, Y. Cai, Y. Liu, H. Li, F. Zhang, and Y. Wang, J. Phys. Chem. Solids 74, 1196 (2013).CrossRefGoogle Scholar
  51. 51.
    D. Briggs, Surf. Interface Anal. 3, 195 (1981).Google Scholar
  52. 52.
    X. Wang, J. Song, and Z.L. Wang, J. Mater. Chem. 17, 711 (2007).CrossRefGoogle Scholar
  53. 53.
    C. Xia, C. Hu, Y. Tian, B. Wan, J. Xu, and X. He, Physica E 42, 2086 (2010).CrossRefGoogle Scholar
  54. 54.
    J. Iqbal, B. Wang, X. Liu, D. Yu, B. He, and R. Yu, New J. Phys. 11, 063009 (2009).CrossRefGoogle Scholar
  55. 55.
    Y. Liu, H. Liu, Z. Chen, N. Kadasala, C. Mao, Y. Wang, Y. Zhang, H. Liu, Y. Liu, J. Yang, and Y. Yan, J. Alloys Compd. 604, 281 (2014).CrossRefGoogle Scholar
  56. 56.
    W. Lu, S. Gao, and J. Wang, J. Phys. Chem. C 112, 16792 (2008).CrossRefGoogle Scholar
  57. 57.
    G. Pellegrino, S.C. Carroccio, F. Ruffino, G.G. Condorelli, G. Nicotra, V. Privitera, and G. Impellizzeri, RSC Adv. 8, 521 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Department of Physics, School of Physical Sciences, College of Natural and Mathematical SciencesUniversity of DodomaDodomaTanzania
  3. 3.Department of Physics, Faculty of EducationUniversity of KhartoumOmdurmanSudan
  4. 4.Department of ChemistryUniversity of ZululandKwaDlangezwaSouth Africa
  5. 5.Department of PhysicsUniversity of the Free StatePhuthaditjhabaSouth Africa

Personalised recommendations