Thermoradiative Cells Based on a p-type Cu3SbSe4 Semiconductor: Application of a Detailed Balance Model

Abstract

Thermoradiative cells (TRCs) are power generators that efficiently convert low temperature waste heat into electricity. Although there is a growing interest in this potential technology, most of the works dealing with the study of efficient TRCs are focused on the theoretical analysis of their performance. In this work, a Cu3SbSe4 semiconductor is proposed to be applied in TRCs. Firstly, the electronic structure of Cu3SbSe4 has been obtained by using density functional theory (DFT) calculations. Then, DFT calculated bandgap values are employed to assess the efficiency of TRCs based on Cu3SbSe4. For this purpose, the power conversion efficiency has been calculated by using the Shockley–Queisser framework through a detailed balance model adapted to TRCs that includes the doping level through its effect on the energy barrier appearing at the pn-junction.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. Strandberg, J. Appl. Phys. 117, 055105 (2015).

    Article  Google Scholar 

  2. 2.

    P. Santhanam and S. Fan, Phys. Rev. B 93, 161410 (2016).

    Article  Google Scholar 

  3. 3.

    W.C. Hsu, J.K. Tong, B. Liao, Y. Huang, S.V. Boriskina, and G. Chen, Sci. Rep. 6, 34837 (2016).

    Article  Google Scholar 

  4. 4.

    E. Tervo, E. Bagherisereshki, and Z. Zhang, Front. Energy 12, 5 (2018).

    Article  Google Scholar 

  5. 5.

    W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  Google Scholar 

  6. 6.

    C. Lin, B. Wang, K.H. Teo, and Z. Zhang, J. Appl. Phys. 122, 243103 (2017).

    Article  Google Scholar 

  7. 7.

    T. Liao, X. Zhang, X. Chen, B. Lin, and J. Chen, Opt. Lett. 42, 3236 (2017).

    Article  Google Scholar 

  8. 8.

    M. Yuan, D.B. Mitzi, W. Liu, A.J. Kellock, S.J. Chey, and V.R. Deline, Chem. Mater. 22, 285 (2010).

    Article  Google Scholar 

  9. 9.

    Y. Zhao and C. Burda, Energy Environ. Sci. 5, 5564 (2012).

    Article  Google Scholar 

  10. 10.

    D. Aldakov, A. Lefrancois, and P. Reiss, J. Mater. Chem. C 1, 3756 (2013).

    Article  Google Scholar 

  11. 11.

    F.J. Fan, L. Wu, and S.H. Yu, Energy Environ. Sci. 7, 190 (2014).

    Article  Google Scholar 

  12. 12.

    A. Singh, A. Singh, J. Ciston, K. Bustillo, D. Nordlund, and D.J. Milliron, J. Am. Chem. Soc. 137, 6464 (2015).

    Article  Google Scholar 

  13. 13.

    M. Ibáñez, D. Cadavid, R. Zamani, N. García-Castelló, V. Izquierdo-Roca, W. Li, A. Fairbrother, J.D. Prades, A. Shavel, J. Arbiol, A. Pérez-Rodríguez, J.R. Morante, and A. Cabot, Chem. Mater. 24, 562 (2012).

    Article  Google Scholar 

  14. 14.

    D.T. Do and S.D. Mahanti, J. Alloy. Compd. 2015, 346 (2015).

    Article  Google Scholar 

  15. 15.

    D.T. Do, V. Ozolins, S.D. Mahanti, M.S. Lee, Y. Zhang, and C. Wolverton, J. Phys. Condens. Matter 24, 415502 (2012).

    Article  Google Scholar 

  16. 16.

    D.T. Do and S.D. Mahanti, J. Phys. Chem. Solids 75, 477 (2014).

    Article  Google Scholar 

  17. 17.

    T.R. Wei, H. Wang, Z.M. Gibbs, C.F. Wu, G.J. Snyder, and J.F. Li, J. Mater. Chem. A 2, 13527 (2014).

    Article  Google Scholar 

  18. 18.

    V.B. Ghanwat, S.S. Mali, S.D. Kharade, N.B. Pawar, S.V. Patil, R.M. Mane, P.S. Patil, C.K. Hong, and P.N. Bhosale, RSC Adv. 4, 51632 (2014).

    Article  Google Scholar 

  19. 19.

    Y. Li, X. Qin, D. Li, X. Li, Y. Liu, J. Zhang, C. Song, and H. Xin, RSC Adv. 5, 31399 (2015).

    Article  Google Scholar 

  20. 20.

    D. Zhao, D. Wu, and L. Bo, Energies 10, 1524 (2017).

    Article  Google Scholar 

  21. 21.

    D. Zhang, J. Yang, Q. Jiang, L. Fu, Y. Xiao, Y. Luo, and Z. Zhou, Mater. Des. 98, 150 (2016).

    Article  Google Scholar 

  22. 22.

    V.B. Ghanwat, S.S. Mali, C.S. Bagade, R.M. Mane, C.K. Hong, and P.N. Bhosale, Energy Technol. 4, 835 (2016).

    Article  Google Scholar 

  23. 23.

    C.H. Chang, C.L. Chen, W.T. Chiu, and Y.Y. Chen, Mater. Lett. 186, 227 (2017).

    Article  Google Scholar 

  24. 24.

    Y. Liu, G. Garcia, S. Ortega, D. Cadavid, P. Palacios, J. Lu, M. Ibáñez, L. Xi, J. De Roo, A.M. Lopez, S. Marti, I. Cabezas, M.D.L. Mata, Z. Luo, C. Dun, O. Dobrozhan, D. Carroll, W. Zhang, J.C. Martins, M. Kovalenko, J. Arbiol, G. Noriega, J. Song, P. Wahnon, and A. Cabot, J. Mater. Chem. A 5, 2592 (2017).

    Article  Google Scholar 

  25. 25.

    D. Li, R. Li, X.Y. Qin, J. Zhang, C.J. Song, L. Wang, and H.X. Xin, CrystEngComm 15, 7166 (2013).

    Article  Google Scholar 

  26. 26.

    X.Y. Li, D. Li, H.X. Xin, J. Zhang, C.J. Song, and X.Y. Qin, J. Alloy. Compd. 561, 105 (2013).

    Article  Google Scholar 

  27. 27.

    G. García, P. Palacios, A. Cabot, and P. Wahnón, Inorg. Chem. 57, 7321 (2018).

    Article  Google Scholar 

  28. 28.

    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  29. 29.

    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  30. 30.

    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  31. 31.

    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  32. 32.

    J.P. Perdew and K.B. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  33. 33.

    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Phys. Rev. B 57, 1505 (1998).

    Article  Google Scholar 

  34. 34.

    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  35. 35.

    R. Strandberg, J. Appl. Phys. 118, 215102 (2015).

    Article  Google Scholar 

  36. 36.

    J.J. Fernández, IEEE Trans. Electron Devices 64, 250 (2017).

    Article  Google Scholar 

  37. 37.

    X. Zhang, W. Peng, J. Lin, X. Chen, and J. Chen, J. Appl. Phys. 122, 174505 (2017).

    Article  Google Scholar 

  38. 38.

    S.J. Byrnes, R. Blanchard, and F. Capasso, Proc. Natl. Acad. Sci. 111, 3927 (2014).

    Article  Google Scholar 

  39. 39.

    T.R. Wei, F. Li, and J.F. Li, J. Electron. Mater. 43, 2229 (2014).

    Article  Google Scholar 

  40. 40.

    Steam Turbine, McGraw-Hill Encyclopedia of Science and Technology (New York: Mc-Graw Hill, 1973).

    Google Scholar 

  41. 41.

    M.A. Green, K. Emery, Y. Hishiwaka, W. Warta, and E.D. Dun, Prog. Photovolt. Res. Appl. 23, 1 (2015).

    Article  Google Scholar 

  42. 42.

    M.A. Green, IEEE Trans. Electron Dev. 31, 671 (1984).

    Article  Google Scholar 

  43. 43.

    U. Würfel, D. Neher, A. Spies, and S. Albercht, Nat. Comm. 6, 6951 (2015).

    Article  Google Scholar 

  44. 44.

    C. Lin, B. Wang, K.H. Theo, and Z. Zhang, J. Appl. Phys. 122, 243103 (2017).

    Article  Google Scholar 

  45. 45.

    M. Ono, P. Santhanam, W. Li, B. Zao, and S. Fan, Appl. Phys. Lett. 114, 161602 (2019).

    Article  Google Scholar 

  46. 46.

    P. Norton, Opto-Electron. Rev. 10, 159 (2002).

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Ministerio de Economía y Competitividad through the project SEHTOP-QC (ENE2016-77798-C4-4-R) and by Universidad Politécnica de Madrid through the project DNSMEP (VJIDOUPM19GGM). The author thankfully acknowledges the computer resources, technical expertise and assistance provided by the Supercomputing and Visualization Center of Madrid (CeSViMa).We also acknowledge Computing and Advanced Technologies Foundation of Extremadura (CénitS, LUSITANIA Supercomputer, Spain) for providing supercomputing facilities. J. J. Fernández thanks to the UNED for providing its computational facilities and to Prof. J. E. Alvarellos and Drs. D. García-Aldea, E. Fernández-Sánchez and J. Rodríguez-Laguna for fruitful discussions. The statements made herein are solely the responsibility of the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregorio García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García, G., Fernández, J.J., Palacios, P. et al. Thermoradiative Cells Based on a p-type Cu3SbSe4 Semiconductor: Application of a Detailed Balance Model. Journal of Elec Materi 48, 6777–6785 (2019). https://doi.org/10.1007/s11664-019-07485-z

Download citation

Keywords

  • Energy conversion systems
  • thermoradiative cells
  • detailed balance model
  • density functional theory
  • semiconductors