Journal of Electronic Materials

, Volume 48, Issue 10, pp 6675–6685 | Cite as

Synergistic Effects of Optical and Photoluminescence Properties, Charge Transfer, and Photocatalytic Activity in MgAl2O4:Ce and Mn-Codoped MgAl2O4:Ce Phosphors

  • Shifa WangEmail author
  • Chaoli Chen
  • Yanwu Li
  • Qing Zhang
  • Yanlan Li
  • Huajing GaoEmail author


A gamma-ray irradiation-assisted polyacrylamide gel method has been used to synthesize MgAl2O4:Ce and Mn-codoped MgAl2O4:Ce phosphors. Ce ion doping improved the photoluminescence properties of MgAl2O4 but did not change the cubic spinel structure of the host. Transmission electron microscopy showed that the mean particle size of the Ce- and Mn-codoped MgAl2O4 nanoparticles was smaller than that of the MgAl2O4 nanoparticles. Ce and Mn codoping improved the light absorption capacity and utilization, the separation efficiency of photogenerated carriers, and the photocatalytic activity of the MgAl2O4 nanoparticles. The MgAl2O4:Ce:Mn nanoparticles exhibited high photocatalytic activity for photodegradation of methylene blue dye under simulated sunlight irradiation due to the synergistic effects of the band-edge position, the light absorption capacity and utilization, and the separation efficiency of photogenerated carriers.


Mn-codoped MgAl2O4:Ce phosphor photoluminescence properties light absorption capacity photocatalytic activity band-edge position 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Talent Introduction Project (09924601), Major Cultivation Projects (18ZDPY01), and Research project of higher education teaching reform (JGZC1903) of Chongqing Three Gorges University, the Chongqing basic research and frontier exploration (general project) (cstc2019jcyj-msxm1327).

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    A. Pille, H. Spiridigliozzi, M. Amamra, T. Billeton, M. Zaghrioui, E. Feldbach, A. Kanaeva, and F. Schoenstein, Ceram. Int. 45, 8305 (2019).CrossRefGoogle Scholar
  2. 2.
    M.J. Iqbal, B. Ismail, C. Rentenberger, and H. Ipser, Mater. Res. Bull. 46, 2271 (2011).CrossRefGoogle Scholar
  3. 3.
    M. Han, Z. Wang, Y. Xu, R. Wu, S. Jiao, Y. Chen, and S. Feng, Mater. Chem. Phys. 215, 251 (2018).CrossRefGoogle Scholar
  4. 4.
    N. Obradović, W.G. Fahrenholtz, S. Filipović, D. Kosanović, A. Dapčević, A. ĐorĐević, I. Balać, and V.B. Pavlović, Ceram. Int. 45, 12015 (2019).CrossRefGoogle Scholar
  5. 5.
    S.K. Hg, S.G. Menon, D. Hebbar, K.S. Choudhari, C. Santhosh, and S.D. Kulkarni, Mater. Res. Bull. 111, 294 (2019).CrossRefGoogle Scholar
  6. 6.
    T. Shiono, K. Shiono, K. Miyamoto, and G. Pezzotti, J. Am. Ceram. Soc. 83, 235 (2000).CrossRefGoogle Scholar
  7. 7.
    S. Benaissa, M. Hamidouche, M. Kolli, G. Bonnefont, and G. Fantozzi, Ceram. Int. 42, 8839 (2016).CrossRefGoogle Scholar
  8. 8.
    A. Goldstein, P. Loiko, Z. Burshtein, N. Skoptsov, I. Glazunov, E. Galun, N. Kuleshov, and K. Yumashev, J. Am. Ceram. Soc. 1331, 1324 (2016).CrossRefGoogle Scholar
  9. 9.
    S. Wang, H. Gao, Y. Wei, Y. Li, X. Yang, L. Fang, and L. Lei, CrystEngComm 21, 263 (2019).CrossRefGoogle Scholar
  10. 10.
    A. Kobylinska, K. Kniec, and L. Marciniak, New J. Chem. 43, 6080 (2019).CrossRefGoogle Scholar
  11. 11.
    Z. Wang, Y. Xu, Q. Zhang, Y. Chen, G. Pang, and S. Feng, J. Lumin. 211, 108 (2019).CrossRefGoogle Scholar
  12. 12.
    D. Valiev, S. Stepanov, O. Khasanov, E. Dvilis, E. Polisadova, and V. Paygin, Opt. Mater. 91, 396 (2019).CrossRefGoogle Scholar
  13. 13.
    W.A.I. Tabaza, H.C. Swart, and R.E. Kroon, Phys. B 439, 109 (2014).CrossRefGoogle Scholar
  14. 14.
    S.C. Xu, P.L. Li, Z.J. Wang, T. Li, Q.Y. Bai, J. Sun, and Z.P. Yang, J. Mater. Chem. C 3, 9112 (2015).CrossRefGoogle Scholar
  15. 15.
    Q. Bao, Z.J. Wang, J. Sun, Z.P. Wang, X.Y. Meng, K.L. Qiu, Y. Chen, Z.P. Yang, and P.L. Li, Dalton Trans. 47, 13913 (2018).CrossRefGoogle Scholar
  16. 16.
    S.C. Xu, Z.J. Wang, P.L. Li, T. Li, Q.Y. Bai, J. Sun, and Z.P. Yang, J. Am. Ceram. Soc. 100, 2069 (2017).CrossRefGoogle Scholar
  17. 17.
    T. Li, P.L. Li, Z.J. Wang, S.C. Xu, Q.Y. Bai, and Z.P. Yang, J. Phys. Chem. C 120, 20254 (2016).CrossRefGoogle Scholar
  18. 18.
    S.C. Xu, Z.J. Wang, P.L. Li, T. Li, Q.Y. Bai, and Z.P. Yang, Spectrochim. Acta A 199, 228 (2018).CrossRefGoogle Scholar
  19. 19.
    K.L. Qiu, Z.J. Wang, J.M. Shi, Y.L. Sun, N. Jiang, M.M. Tian, X.Y. Meng, Z.P. Yang, and P.L. Li, Spectrochim. Acta A 213, 141 (2019).CrossRefGoogle Scholar
  20. 20.
    T. Li, P.L. Li, Z.J. Wang, S.C. Xu, Q.Y. Bai, and Z.P. Yang, Phys. Chem. Chem. Phys. 19, 4131 (2017).CrossRefGoogle Scholar
  21. 21.
    X. Li, Z.J. Wang, J.J. Liu, X.Y. Meng, K.L. Qiu, Q. Bao, Y.B. Li, Z.P. Wang, Z.P. Yang, and P.L. Li, Inorg. Chem. 57, 13783 (2018).CrossRefGoogle Scholar
  22. 22.
    C. Wang, Z. Wang, J. Cheng, Z. Li, M. Tian, Z. Yang, and P. Li, CrystEngComm 20, 7156 (2018).CrossRefGoogle Scholar
  23. 23.
    C. Wang, Z. Wang, P. Li, J. Cheng, Z. Li, M. Tian, Y. Sun, and Z. Yang, J. Mater. Chem. C 5, 10839 (2017).CrossRefGoogle Scholar
  24. 24.
    X. Li, P.L. Li, Z.J. Wang, S.M. Liu, Q. Bao, X.Y. Meng, K.L. Qiu, Y.B. Li, Z.Q. Li, and Z.P. Yang, Chem. Mater. 29, 8792 (2017).CrossRefGoogle Scholar
  25. 25.
    P.L. Li, Z.J. Wang, Z.P. Yang, and Q.L. Guo, J. Mater. Chem. C 2, 7823 (2014).CrossRefGoogle Scholar
  26. 26.
    Y.S. Sun, P.L. Li, Z.J. Wang, J. Cheng, Z.L. Li, C. Wang, M.M. Tian, and Z.P. Yang, J. Phys. Chem. C 120, 20254 (2016).CrossRefGoogle Scholar
  27. 27.
    R.Z. Gu, M.Y. Guan, N. Jiang, T.Y. Yuan, G.Q. Ma, C. Wang, Z.P. Yang, P.L. Li, and Z.J. Wang, J. Alloys Compd. 775, 393 (2019).CrossRefGoogle Scholar
  28. 28.
    C. Wang, P.L. Li, Z.J. Wang, Y.S. Sun, J.G. Cheng, Z.L. Li, M.M. Tian, and Z.P. Yang, Phys. Chem. Chem. Phys. 18, 28661 (2016).CrossRefGoogle Scholar
  29. 29.
    T. Sakuma, S. Minowa, T. Katsumata, S. Komuro, and H. Aizawa, Opt. Mater. 37, 302 (2014).CrossRefGoogle Scholar
  30. 30.
    J. Lin, Y. Huang, J. Zhang, F. Shi, S. Wei, J. Gao, and X. Ding, Mater. Res. Bull. 44, 106 (2009).CrossRefGoogle Scholar
  31. 31.
    R. Zhong, J. Zhang, H. Wei, X. Qi, M. Li, and X. Han, Chem. Phys. Lett. 508, 207 (2011).CrossRefGoogle Scholar
  32. 32.
    R.J. Dillon, J.B. Joo, F. Zaera, Y. Yin, and C.J. Bardeen, Phys. Chem. Chem. Phys. 15, 1488 (2013).CrossRefGoogle Scholar
  33. 33.
    Z. Wei, R. Li, and R. Wang, RSC Adv. 8, 7956 (2018).CrossRefGoogle Scholar
  34. 34.
    L. Zhang and H. Yang, Appl. Phys. A 98, 801 (2010).CrossRefGoogle Scholar
  35. 35.
    Q. Xiao, Z. Si, J. Zhang, C. Xiao, Z. Yu, and G. Qiu, J. Mater. Sci. 42, 9194 (2007).CrossRefGoogle Scholar
  36. 36.
    L.Q. Jing, X.J. Sun, B.F. Xu, B.Q. Wang, W.M. Cai, and H.G. Fu, J. Solid State Chem. 177, 3375 (2004).CrossRefGoogle Scholar
  37. 37.
    R. Sellappan, A. Galeckas, V. Venkatachalapathy, A.Y. Kuznetsov, and D. Chakarov, Appl. Catal. B Environ. 106, 337 (2011).CrossRefGoogle Scholar
  38. 38.
    L. Cai, Q. Long, and C. Yin, Appl. Surf. Sci. 319, 60 (2014).CrossRefGoogle Scholar
  39. 39.
    S.F. Wang, H. Lv, X.S. Zhou, Y.Q. Fu, and X.T. Zu, Nanosci. Nanotechnol. Lett. 6, 758 (2014).CrossRefGoogle Scholar
  40. 40.
    H. Yang, Z.E. Cao, X. Shen, T. Xian, W.J. Feng, J.L. Jiang, Y.C. Feng, Z.Q. Wei, and J.F. Dai, J. Appl. Phys. 106, 104317 (2009).CrossRefGoogle Scholar
  41. 41.
    H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, J. Solid State Chem. 177, 2649 (2004).CrossRefGoogle Scholar
  42. 42.
    X. Fu, H. Zhang, S. Niu, and Q. Xin, J. Solid State Chem. 178, 603 (2005).CrossRefGoogle Scholar
  43. 43.
    S. Wang, D. Li, C. Yang, G. Sun, J. Zhang, and Y. Xia, J. Sol–Gel. Sci. Technol. 84, 169 (2017).CrossRefGoogle Scholar
  44. 44.
    H.J. Gao, H. Yang, S.F. Wang, D. Li, F. Wang, and L.M. Fang, J. Sol–Gel. Sci. Technol. 86, 206 (2018).CrossRefGoogle Scholar
  45. 45.
    R.J. Wiglusz, T. Grzyb, S. Lis, and W. Strek, J. Nanosci. Nanotechnol. 9, 5803 (2009).CrossRefGoogle Scholar
  46. 46.
    W.H. Bragg, Philos. Mag. 30, 305 (1915).CrossRefGoogle Scholar
  47. 47.
    S. Nishika, Proc. Math. Phys. Soc. Tokyo 8, 199 (1915).Google Scholar
  48. 48.
    Z. Cui, H. Yang, and X. Zhao, Mater. Sci. Eng. B Adv. 229, 160 (2018).CrossRefGoogle Scholar
  49. 49.
    Y. Xia, Z. He, K. Hu, B. Tang, and X. Li, J. Alloys Compd. 753, 356 (2018).CrossRefGoogle Scholar
  50. 50.
    L.J. Di, H. Yang, T. Xian, and X.J. Chen, Nanoscale Res. Lett. 13, 257 (2018).CrossRefGoogle Scholar
  51. 51.
    H. Gao, H. Yang, S. Wang, and X. Zhao, Ceram. Int. 44, 14754 (2018).CrossRefGoogle Scholar
  52. 52.
    S.V. Motloung, B.F. Dejene, O.M. Ntwaeaborwa, H.C. Swart, and R.E. Kroon, Chem. Phys. 487, 75 (2017).CrossRefGoogle Scholar
  53. 53.
    A. Tomita, T. Sato, K. Tanaka, Y. Kawabe, M. Shirai, K. Tanaka, and E. Hanamura, J. Lumin. 109, 19 (2004).CrossRefGoogle Scholar
  54. 54.
    S. Vijay, R.P.S. Chakradhar, and J.L. Rao, J. Solid State Chem. 180, 2067 (2007).CrossRefGoogle Scholar
  55. 55.
    K. Izumi, S. Miyazaki, S. Yoshida, T. Mizokawa, and E. Hanamura, Phys. Rev. B 76, 075111 (2007).CrossRefGoogle Scholar
  56. 56.
    E. Hanamura, Y. Kawabe, H. Takashima, T. Sato, and A. Tomita, J. Nonlinear Opt. Phys. 12, 467 (2003).CrossRefGoogle Scholar
  57. 57.
    Q. Sai, C. Xia, H. Rao, X. Xu, G. Zhou, and P. Xu, J. Lumin. 131, 2359 (2011).CrossRefGoogle Scholar
  58. 58.
    X.X. Zhao, H. Yang, H.M. Zhang, Z.M. Cui, and W.J. Feng, Desalin. Water Treat. 145, 326 (2019).CrossRefGoogle Scholar
  59. 59.
    Y. Xia, Z. He, W. Yang, B. Tang, Y. Lu, and K. Hu, Mater. Res. Express 5, 025504 (2018).CrossRefGoogle Scholar
  60. 60.
    H. Gao, H. Yang, and S. Wang, Trans. Indian Ceram. Soc. 77, 150 (2018).CrossRefGoogle Scholar
  61. 61.
    Y. Yan, H. Yang, Z. Yi, R. Li, and X. Wang, Micromachines 10, 254 (2019).CrossRefGoogle Scholar
  62. 62.
    R.G. Zhu, Y.J. Zhu, M. Zhang, Y. Xiao, X.L. Du, H. Liu, and S.L. Wang, Mater. Sci. Eng. C 39, 305 (2014).CrossRefGoogle Scholar
  63. 63.
    Y. Xia, Z. He, J. Su, Y. Liu, and B. Tang, Nanoscale Res. Lett. 13, 148 (2018).CrossRefGoogle Scholar
  64. 64.
    H. Gao, H. Yang, G. Yang, and S. Wang, Mater. Technol. 33, 321 (2018).CrossRefGoogle Scholar
  65. 65.
    G.A.M. Ali, M.M. Yusoff, E.R. Shaaban, and K.F. Chong, Ceram. Int. 43, 8440 (2017).CrossRefGoogle Scholar
  66. 66.
    T. Tachikawa, M. Fujitsuka, and T. Majima, J. Phys. Chem. C 111, 5259 (2007).CrossRefGoogle Scholar
  67. 67.
    S.F. Wang, H.J. Gao, L.M. Fang, Y. Wei, Y.W. Li, and L. Lei, Z. Phys. Chem. (2019). Scholar
  68. 68.
    Y. Xia, Z. He, J. Su, B. Tang, and Y. Liu, J. Mater. Sci. Mater. Electron. 29, 15271 (2018).CrossRefGoogle Scholar
  69. 69.
    H.J. Gao, F. Wang, S.F. Wang, X.X. Wang, Z. Yi, and H. Yang, Mater. Res. Bull. 115, 140 (2019).CrossRefGoogle Scholar
  70. 70.
    S.Y. Wang, H. Yang, X.X. Wang, and W.J. Feng, J. Electron. Mater. 48, 2067 (2019).CrossRefGoogle Scholar
  71. 71.
    S.F. Wang, H.J. Gao, C.L. Chen, Y. Wei, and X.X. Zhao, J. Sol–Gel Sci. Technol. (2019). Scholar
  72. 72.
    T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, J. Phys. Chem. C 111, 7574 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringChongqing Three Gorges UniversityChongqing, WanzhouChina
  2. 2.Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir AreaChongqing Three Gorges UniversityChongqing, WanzhouChina
  3. 3.School of Environmental and Chemical EngineeringChongqing Three Gorges UniversityChongqing, WanzhouChina
  4. 4.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous MetalsLanzhou University of TechnologyLanzhouChina
  5. 5.School of ScienceLanzhou University of TechnologyLanzhouChina

Personalised recommendations