Influence of Surface Passivation on Indium Arsenide Nanowire Band Gap Energies

Abstract

The interplay between surface chemistry and quantum confinement on the band gap energies of indium arsenide (InAs) nanowires is investigated by first principle computations as the surface-to-volume ratio increases with decreasing cross section. Electronic band structures are presented as determined by both density functional and hybrid density functional theory (DFT) calculations; the latter are used to provide improved band gap energy estimates over those from standard approximate DFT methods. Different monovalent chemical species with varying electron affinity are used to eliminate surface states to enable direct comparison between surface chemistry and quantum confinement. The influence of these effects on energy band gaps and electron effective masses is highlighted. It is found that many desirable properties in terms of electronic properties and the elimination of surface states for nanoscale field effect transistors fabricated using [100]-oriented InAs can be achieved.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J.A. Del Alamo, Nature 479, 317 (2011).

    Article  Google Scholar 

  2. 2.

    A.M. Ionescu and H. Riel, Nature 479, 329 (2011).

    Article  Google Scholar 

  3. 3.

    J. Nah, H. Fang, C. Wang, K. Takei, M.H. Lee, E. Plis, S. Krishna, and A. Javey, Nano Lett. 12, 3592 (2012).

    Article  Google Scholar 

  4. 4.

    P.J. Pauzauskie and P. Yang, Mater. Today 9, 36–45 (2006).

    Article  Google Scholar 

  5. 5.

    S.F. Karg, V. Troncale, U. Drechsler, P. Mensch, P.D. Kanungo, H. Schmid, V. Schmidt, L. Gignac, H. Riel, and B. Gotsmann, Nanotechnology 25, 305702 (2014).

    Article  Google Scholar 

  6. 6.

    S.Y. Wu, C.Y. Lin, M.C. Chiang, J.J. Liaw, J.Y. Cheng, S.H. Yang, C.H. Tsai, P.N. Chen, T. Miyashita, C.H. Chang, V.S. Chang, K.H. Pan, J.H. Chen, Y.S. Mor, K.T. Lai, C.S. Liang, H.F. Chen, S.Y. Chang, C.J. Lin, C.H. Hsieh, R.F. Tsui, C.H. Yao, C.C. Chen, R. Chen, C.H. Lee, H.J. Lin, C.W. Chang, K.W. Chen, M.H. Tsai, K.S. Chen, Y. Ku and S.M. Jang, in 2016 IEEE International Electron Devices Meeting (IEDM) (2016), p. 2.6.1.

  7. 7.

    R. Xie, P. Montanini, K. Akarvardar, N. Tripathi, B. Haran, S. Johnson, T. Hook, B. Hamieh, D. Corliss, J. Wang, X. Miao, J. Sporre, J. Fronheiser, N. Loubet, M. Sung, S. Sieg, S. Mochizuki, C. Prindle, S. Seo, A. Greene, J. Shearer, A. Labonte, S. Fan, L. Liebmann, R. Chao, A. Arceo, K. Chung, K. Cheon, P. Adusumilli, H.P. Amanapu, Z. Bi, J. Cha, H.C. Chen, R. Conti, R. Galatage, O. Gluschenkov, V. Kamineni, K. Kim, C. Lee, F. Lie, Z. Liu, S. Mehta, E. Miller, H. Niimi, C. Niu, C. Park, D. Park, M. Raymond, B. Sahu, M. Sankarapandian, S. Siddiqui, R. Southwick, L. Sun, C. Surisetty, S. Tsai, S. Whang, P. Xu, Y. Xu, C. Yeh, P. Zeitzoff, J. Zhang, J. Li, J. Demarest, J. Arnold, D. Canaperi, D. Dunn, N. Felix, D. Gupta, H. Jagannathan, S. Kanakasabapathy, W. Kleemeier, C. Labelle, M. Mottura, P. Oldiges, S. Skordas, T. Standaert, T. Yamashita, M. Colburn, M. Na, V. Paruchuri, S. Lian, R. Divakaruni, T. Gow, S. Lee, A. Knorr, H. Bu and M. Khare, in 2016 IEEE International Electron Devices Meeting (IEDM) (2016), p. 2.7.1.

  8. 8.

    T. Huynh-Bao, S. Sakhare, J. Ryckaert, D. Yakimets, A. Mercha, D. Verkest, A.V.Y. Thean and P. Wambacq, in 2015 International Conference on IC Design and Technology (ICICDT) (2015), p. 1.

  9. 9.

    J.-P. Colinge and J.C. Greer, Nanowire Transistors: Physics of Devices and Materials in One Dimension (Cambridge: Cambridge University Press, 2016).

    Google Scholar 

  10. 10.

    D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, and S.T. Lee, Science 299, 1874 (2003).

    Article  Google Scholar 

  11. 11.

    K. Jung, P.K. Mohseni, and X. Li, Nanoscale 6, 15293 (2014).

    Article  Google Scholar 

  12. 12.

    P. Razavi and J.C. Greer, Solid-State Electron. 149, 6–14 (2018).

    Article  Google Scholar 

  13. 13.

    P.W. Leu, B. Shan, and K. Cho, Phys. Rev. B 73, 195320 (2006).

    Article  Google Scholar 

  14. 14.

    M. Nolan, S. O’Callaghan, G. Fagas, J.C. Greer, and T. Frauenheim, Nano Lett. 7, 34 (2007).

    Article  Google Scholar 

  15. 15.

    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  16. 16.

    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  17. 17.

    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  18. 18.

    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  19. 19.

    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  20. 20.

    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  21. 21.

    J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, and J.G. ÁngyÁn, J. Chem. Phys. 124, 154709 (2006).

    Article  Google Scholar 

  22. 22.

    P. Razavi and J.C. Greer, Mater. Chem. Phys. 206, 35 (2018).

    Article  Google Scholar 

  23. 23.

    L. Lin and J. Robertson, J. Vac. Sci. Technol. B: Nanotechnol. Microelectron. Mater. Process. Meas. Phenom 30, 04E101 (2012).

    Article  Google Scholar 

  24. 24.

    M.H. Sun, H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, and C.Z. Ning, Nano Lett. 12, 3378 (2012).

    Article  Google Scholar 

  25. 25.

    L.E. Jensen, M.T. Björk, S. Jeppesen, A.I. Persson, B.J. Ohlsson, and L. Samuelson, Nano Lett. 4, 1961 (2004).

    Article  Google Scholar 

  26. 26.

    J.W.W. Van Tilburg, R.E. Algra, W.G.G. Immink, and M. Verheijen, Semicond. Sci. Technol. 25, 024011 (2010).

    Article  Google Scholar 

  27. 27.

    F. Ning, L.-M. Tang, Y. Zhang, and K.-Q. Chen, J. Appl. Phys. 114, 224304 (2013).

    Article  Google Scholar 

  28. 28.

    H. Shu, D. Cao, P. Liang, S. Jin, X. Chen, and W. Lu, J. Phys. Chem. C 116, 17928–17933 (2012).

    Article  Google Scholar 

  29. 29.

    M. Galicka, M. Bukała, R. Buczko, and P. Kacman, J. Phys.: Condens. Matter 20, 454226 (2008).

    Google Scholar 

  30. 30.

    H. Shu, X. Chen, H. Zhao, X. Zhou, and W. Lu, J. Phys. Chem. C 114, 17514–17518 (2010).

    Article  Google Scholar 

  31. 31.

    H.J. Joyce, J. Wong-Leung, Q. Gao, H.H. Tan, and C. Jagadish, Nano Lett. 10, 908 (2010).

    Article  Google Scholar 

  32. 32.

    S. Cahangirov and S. Ciraci, Phys. Rev. B 79, 165118-1 (2009).

    Article  Google Scholar 

  33. 33.

    X. Huang, E. Lindgren, and J.R. Chelikowsky, Phys. Rev. B 71, 165328 (2005).

    Article  Google Scholar 

  34. 34.

    K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union project DEEPEN funded under NMR-2013-1.4-1 Grant agreement number 604416. We also wish to acknowledge the SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities. JG acknowledges funding from the Nottingham Ningbo New Materials Institute.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James C. Greer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 436 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Razavi, P., Greer, J.C. Influence of Surface Passivation on Indium Arsenide Nanowire Band Gap Energies. Journal of Elec Materi 48, 6654–6660 (2019). https://doi.org/10.1007/s11664-019-07476-0

Download citation

Keywords

  • InAs
  • GaAs
  • nanowires
  • electronic parameters
  • density functional
  • surface passivation
  • quantum confinement