Skip to main content

Effect of Au Addition on the Crystallinity and Electrical Properties of Thermally Strained LaNiO3−δ Thin Films

Abstract

We prepared Au-LaNiO3−δ (Au-LNO) nanocomposite thin films by a sol–gel coating method. The effects of the doped Au on the microstructure and electrical properties of the Au-LNO films under different types of thermal strain were investigated. Introduction of Au into the LNO films changed their preferential orientation and markedly lowered their room-temperature resistivity. Moreover, the resistivity of the films containing Au nanoparticles showed negligible dependence on thermal strain, in contrast to the behavior of Au-free LNO films. We performed microstrain analysis and x-ray photoelectron spectroscopy to explore the strain–resistivity relationship of the films. Microstrain was closely related to the density of oxygen vacancies in LNO films and dominated the change in electrical properties of polycrystalline LNO films. The addition of Au promoted crystallization of the LNO films and decreased the density of oxygen vacancies, which stabilized the microstrain in the films under different external strain and accounted for the strain independence of the resistivity of the Au-LNO films.

References

  1. P.D.C. King, H.I. Wei, Y.F. Nie, M. Uchida, C. Adamo, S. Zhu, X. He, I. Bozovic, D.G. Schlom, and K.M. Shen, Nat. Nanotechnol. 9, 443 (2014).

    Article  Google Scholar 

  2. H.H. Chen, A.J. Millis, and C.A. Marianetti, Phys. Rev. Lett. 111, 116403 (2013).

    Article  Google Scholar 

  3. B. Geisler and R. Pentcheva, Phys. Rev. Mater. 2, 055403 (2018).

    Article  Google Scholar 

  4. X.X. Huang, X.G. Tang, J.L. Lai, Y.P. Jiang, Q.X. Liu, and D.P. Xiong, J. Electron. Mater. 10, 3783 (2015).

    Article  Google Scholar 

  5. R. Li, X.G. Tang, Y.P. Jiang, Y.K.Q.X. Liu, and L.L. Jiang, J. Mater. Sci.: Mater. Electron. 28, 12646 (2017).

    Google Scholar 

  6. K. Tsubouchi, I. Ohkubo, H. Kumigashira, Y. Masumoto, T. Ohnishi, M. Lippmaa, H. Koinuma, and M. Oshima, Appl. Phys. Lett. 92, 262109 (2008).

    Article  Google Scholar 

  7. L. Qiao and X.F. Bi, Acta Mater. 57, 4109 (2009).

    Article  Google Scholar 

  8. E.J. Moon, J.M. Rondinelli, N. Prasai, B.A. Gray, M. Kareev, J. Chakhalian, and J.L. Cohn, Phys. Rev. B 85, 121106 (2012).

    Article  Google Scholar 

  9. M. Wu, E. Benckiser, M.W. Haverkort, A. Frano, Y. Lu, U. Nwankwo, S. Brueck, P. Audehm, E. Goering, S. Macke, V. Hinkov, P. Wochner, G. Christiani, S. Heinze, G. Logvenov, H.U. Habermeier, and B. Keimer, Phys. Rev. B 88, 125124 (2013).

    Article  Google Scholar 

  10. S.J. May, J.W. Kim, J.M. Rondinelli, E. Karapetrova, N.A. Spaldin, A. Bhattacharya, and P.J. Ryan, Phys. Rev. B 82, 014110 (2010).

    Article  Google Scholar 

  11. G.S. Wang, D. Remiens, E. Dogheche, and X.L. Dong, Appl. Phys. A 88, 657 (2007).

    Article  Google Scholar 

  12. G. Bai, Z.G. Liu, X.B. Yan, and C.C. Zhang, J. Appl. Phys. 116, 054103 (2014).

    Article  Google Scholar 

  13. B.L. Peng, Q. Zhang, Y.N. Lyu, L.J. Liu, X.J. Lou, C. Shaw, H.T. Huang, and Z.L. Wang, Nano Energy 47, 285 (2018).

    Article  Google Scholar 

  14. M.W. Zhu, H.L. Wang, H. Lei, Y.J. Zhang, N. Jia, and Z.J. Wang, Appl. Phys. A 122, 364 (2016).

    Article  Google Scholar 

  15. D. Misra and T.K. Kundu, J. Electron. Mater. 46, 150 (2017).

    Article  Google Scholar 

  16. M.W. Zhu, P. Komissinskiy, A. Radetinac, Z.J. Wang, and L. Alff, J. Appl. Phys. 117, 155306 (2015).

    Article  Google Scholar 

  17. J.D. Sayre, K.T. Delaney, N.A. Spaldin, Interplay between strain and oxygen vacancies in lanthanum aluminate. (arXiv by Cornell Univerisity, 2012), https://arxiv.org/abs/1202.1431v1. Accessed 7 Feb. 2012.

  18. F. Conchon, A. Boulle, R. Guinebretiere, C. Girardot, S. Pignard, J. Kreisel, F. Weiss, E. Dooryhee, and J. Hodeau, Appl. Phys. Lett. 91, 192110 (2007).

    Article  Google Scholar 

  19. B.A. Akgun, C. Durucan, and N.P. Mellott, J. Sol Gel. Sci. Technol. 58, 277 (2011).

    Article  Google Scholar 

  20. X.K. Ning, Z.J. Wang, and Z.D. Zhang, Adv. Funct. Mater. 24, 5393 (2014).

    Article  Google Scholar 

  21. N. Jia, Y.D. Wang, S.D. Wu, W.Z. Han, Y.N. Wang, J.N. Deng, and P.K. Liaw, Script Mater. 54, 1247 (2006).

    Article  Google Scholar 

  22. Z. Zhang, F. Zhou, and E.J. Lavernia, Metall. Mater. Trans. A 34A, 1349 (2003).

    Article  Google Scholar 

  23. H.P. Klug and L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd ed. (New York: Wiley, 1974), pp. 618–687.

    Google Scholar 

  24. M.F. Ashby and Y.J.M. Brechet, Acta Mater. 51, 5801 (2003).

    Article  Google Scholar 

  25. J. Son, P. Moetakef, J.M. Lebeau, D. Ouellette, L. Balents, S.J. Allen, and S. Stemmer, Appl. Phys. Lett. 96, 062114 (2010).

    Article  Google Scholar 

  26. K. Horiba, R. Eguchi, M. Taguchi, A. Chainani, A. Kikkawa, Y. Senba, H. Ohashi, and S. Shin, Phys. Rev. B 76, 155104 (2007).

    Article  Google Scholar 

  27. J.J. Zhang, H. Zheng, Y. Ren, and J.F. Mitchell, Cryst. Growth Des. 17, 2730 (2017).

    Article  Google Scholar 

  28. N. Gayathri, A.K. Raychaudhuri, X.Q. Xu, J.L. Peng, and R.L. Greene, J. Phys.: Condens. Matter 10, 1323 (1998).

    Google Scholar 

  29. Y.D. Wang, R. Lin Peng, X.L. Wang, and R.L. McGreevy, Acta Mater. 50, 1717 (2002).

    Article  Google Scholar 

  30. L. Qiao and X.F. Bi, Thin Solid Films 519, 943 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science of Foundation of China (nos.51202256 and 51571057) and the Fundamental Research Funds for the Central Universities (no.N170204012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Z. Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, M.W., Shi, D.C., Zhao, X. et al. Effect of Au Addition on the Crystallinity and Electrical Properties of Thermally Strained LaNiO3−δ Thin Films. J. Electron. Mater. 48, 6598–6606 (2019). https://doi.org/10.1007/s11664-019-07460-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07460-8

Keywords

  • Conductive oxide
  • sol–gel process
  • nanocomposite film
  • microstrain
  • oxygen vacancy