Design of a Ternary Logical Circuit Using the Au-DNA-Ag Memristor

  • Sepideh Ebrahimi
  • Reza Sabbaghi-NadooshanEmail author
  • Mohammad Bagher Tavakoli


An asymmetrical element based on Au-DNA-Ag has been proposed and designed to play the role of a DNA memristor. The role of the DNA length here is to decrease the power and size of the memristor. In fact, according to the context and simulation results, the combination of metal–DNA–metal can play the role of a memristor and produce a similar behavior as a memristor. It has been shown that the asymmetrical design, i.e., two different metals, causes a sharp decrease in flow and thus power consumption. With this element, a ternary logic has been designed and simulated with much less power in comparison with similar circuits. With the help of this device, a new, efficient and ternary reversible logic gate has been proposed and designed. With the help of this proposed gate, all logic circuits with minimum quantum cost, garbage output, power consumption and delay were proposed and designed. In fact, in this research, a reversible logic was proposed that has much less quantum cost, garbage output, power consumption and delay than previous designs.


DNA gate logic memristor ternary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    M. Göös, T. Lempiäinen, E. Czeizler, and P. Orponen, J. Comput. Syst. Sci. 80, 297 (2014).CrossRefGoogle Scholar
  2. 2.
    F.B. Zarrabi, M. Bazgir, and R. Hekmati, IEEE Photon. Technol. Lett. 31, 779 (2019).CrossRefGoogle Scholar
  3. 3.
    M.R. Soheilifar and F.B. Zarrabi, Opt. Quantum Electron. 51, 155 (2019).CrossRefGoogle Scholar
  4. 4.
    Z. Mirkhani and N. Mohammadzadeh, Quantum Inf. Process. 15, 4117 (2016).CrossRefGoogle Scholar
  5. 5.
    M. Sarkar, P. Ghos, and S. Mohant, Nat. Comput. 16, 463 (2017).CrossRefGoogle Scholar
  6. 6.
    S. Zhu, J.Y. Cai, and Y.F. Meng, Genet. Program. Evolvable Mach. 17, 83 (2016).CrossRefGoogle Scholar
  7. 7.
    J. Yang, Z. Sun, X. Wang, Y. Chen, and H. Li, IEEE Trans. Emerg. Sel. Top. Circuits Syst. 6, 212 (2016).CrossRefGoogle Scholar
  8. 8.
    S. Qin, R. Dong, X. Yan, and Q. Du, Org. Electron. 22, 147 (2015).CrossRefGoogle Scholar
  9. 9.
    L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971).CrossRefGoogle Scholar
  10. 10.
    D.B. Strukov, G.S. Snider, D.R. Stewart, and R.S. Williams, Nature 453, 80 (2008).CrossRefGoogle Scholar
  11. 11.
    A. Banerjee and A. Pathak, in Third International Conference on Emerging Trends in Engineering and Technology (2011).Google Scholar
  12. 12.
    M.T. Emam and L.A.A. Essayed, in International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD) (2010), p. 1.Google Scholar
  13. 13.
    V. Gupta, S. Parthasarathy, and M.J. Zaki, in Annual DIMACS Workshop on DNA Based Computers (Philadelphia, 1997), p. 212.Google Scholar
  14. 14.
    M.N. Stojanovic and D. Stefanovic, J. Am. Chem. Soc. 125, 6673 (2003).CrossRefGoogle Scholar
  15. 15.
    H. Lederman, J. Macdonald, D. Stefanovic, and M.N. Stojanovic, Biochemistry 45, 1194 (2006).CrossRefGoogle Scholar
  16. 16.
    E. Perez-Inestrosa, J.M. Montenegro, D. Collado, R. Suau, and J. Casado, J. Phys. Chem. C 111, 6904 (2007).CrossRefGoogle Scholar
  17. 17.
    A. Khoshkhahesh, S. Ebrahimi, and R. Sabbaghi-Nadooshan, BioNanoScience 8, 118 (2018).CrossRefGoogle Scholar
  18. 18.
    B.S.E. Zoraida, M. Arock, B.S.M. Ronald, and R. Ponalagusamy, in Fourth International Conference on Natural Computation (2008), p. 533.Google Scholar
  19. 19.
    T. Song, S. Wang, and X. Wang, in International Conference on Intelligent System and Knowledge Engineering (ISKE) (2008), p. 114.Google Scholar
  20. 20.
    C.M. Gearheart, E.C. Rouchka, and B. Arazi, in International Midwest Symposium on Circuits and Systems (MWSCAS) (2010), p. 248.Google Scholar
  21. 21.
    P. Roy, D. Dey, S. Sinha, and D. De, in Proceedings of Seventh International Conference on Bio-Inspired Computing, Theories and Applications (BIC-TA), Advances in Intelligent Systems and Computing (Springer India, 2013), p. 355.Google Scholar
  22. 22.
    T. Ahmed, A. Sarker, M.I. Sharif, S.M.M. Rashid, M.A. Rahman, and H. M.H. Babo, in IEEE 26th International SOC Conference (SOCC) (2013), p. 256.Google Scholar
  23. 23.
    A. Sarker, H.M.H. Babu, and M.S. Islam, in IEEE International Symposium on Circuits and Systems (ISCAS), (2014), p. 1828.Google Scholar
  24. 24.
    A. Sarker, H.M.H. Babu, and S.M.M. Rashid, IET Nanobiotechnol. 9, 226 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Sepideh Ebrahimi
    • 1
  • Reza Sabbaghi-Nadooshan
    • 2
    Email author
  • Mohammad Bagher Tavakoli
    • 1
  1. 1.Department of Electrical EngineeringArak Branch, Islamic Azad UniversityArakIran
  2. 2.Electrical Engineering DepartmentIslamic Azad University, Central Tehran BranchTehranIran

Personalised recommendations