Skip to main content

Advertisement

Log in

Effects of Electrical Properties on Determining Materials for Power Generation Enhancement in TEG Modules

  • Progress and Challenges for Emerging Integrated Energy Modules
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study aimed to increase the energy efficiency of thermoelectric generators designed by considering the electrical properties of p- and n-type semiconductor materials for reducing the costs associated with the experiments, errors, and long production processes. Accordingly, the estimation of the energy amount to be produced by the thermoelectric materials was achieved by different doping elements using three different parameters such as skin-depth, electrical conductivity and dielectric constant. Additionally, the findings were supported by experimental results. In contrast to the conventionally used black-box type approach and estimation methods, an inference was obtained on the actual values of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Kayabasi, M.A. Alperen, and H. Kurt, Int. J. Green Energy 16, 200 (2019).

    Article  Google Scholar 

  2. E. Kayabasi and H. Kurt, Eng. Sci. Technol. Int. J. 21, 70 (2018).

    Article  Google Scholar 

  3. F.B. Özkul, E. Kayabasi, E. Çelik, H. Kurt, and E. Arcaklio&#U01E7;lu, in 2018 International Conference on Photovoltaic Science and Technology (IEEE Explore Digital Library, 2018), pp. 1–6.

  4. M. Yilmaz, E. Kayabasi, and M. Akbaba, Eng. Sci. Technol. Int. J. (2019). https://doi.org/10.1016/j.jestch.2019.02.006; https://www.sciencedirect.com/science/article/pii/S2215098618321803. Accessed 22 June 2019.

  5. F. Zhang, B. Niu, K. Zhang, X. Zhang, Q. Lu, and J. Zhang, J. Rare Earths 31, 885 (2013).

    Article  Google Scholar 

  6. E. Kilinc, S. Demirci, F. Uysal, E. Celik, and H. Kurt, J. Mater. Sci. Mater. Electron. 28, 11769 (2017).

    Article  Google Scholar 

  7. F. Uysal, E. Kilinc, H. Kurt, E. Celik, M. Dugenci, and S. Sagiroglu, J. Electron. Mater. 46, 4931 (2017).

    Article  Google Scholar 

  8. C. Baker, P. Vuppuluri, L. Shi, and M. Hall, J. Electron. Mater. 41, 1290 (2012).

    Article  Google Scholar 

  9. T. Ozturk, O. Morikawa, İ. Ünal, İ. Uluer, and J. Infrared, J. Infrared Millim. Terahertz Waves 38, 1241 (2017).

    Article  Google Scholar 

  10. T. Ozturk, M. Hudlička, and İ. Uluer, J. Infrared Millim. Terahertz Waves 38, 1510 (2017).

    Article  Google Scholar 

  11. S. Latkowski, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, G. Ducournau, A. Beck, E. Peytavit, T. Akalin, and J.F. Lampin, Appl. Phys. Lett. 96, 23 (2010).

    Article  Google Scholar 

  12. H. Treichel, J. Electron. Mater. 30, 290 (2001).

    Article  Google Scholar 

  13. Y. Li, P. Su, S. Gao, Q. Shen, and M. Gong, Microelectron. Eng. 159, 143 (2016).

    Article  Google Scholar 

  14. T.O. Gegechkori, V.G. Yakeli, and Z.S. Kachlishvili, Phys. Status Solidi 112, 379 (1982).

    Article  Google Scholar 

  15. J. Krupka, J. Breeze, A. Centeno, N. Alford, T. Claussen, L. Jensen, and I.E.E.E. Trans, Microw. Theory Tech. 54, 3995 (2006).

    Article  Google Scholar 

  16. B.V. Klimkovich, N.A. Poklonski, and V.F. Stelmakh, Phys. Status Solidi 134, 763 (1986).

    Article  Google Scholar 

  17. E.A. Bondar, S.A. Gormin, I.V. Petrochenko, and L.P. Shadrina, Opt. Spectrosc. 89, 892 (2000).

    Article  Google Scholar 

  18. K. Alfaramawi, Open Phys. 13, 334 (2015).

    Article  Google Scholar 

  19. O.A. Kosygin, V.N. Chupis, and A.Y. Somov, Tech. Phys. 44, 602 (1999).

    Article  Google Scholar 

  20. Y. Iwashita, in 22nd International Linear Accelerator Conference (2004), pp. 700–702.

  21. Z. Nie, Y. Hou, J. Deng, P.A. Ramachandran, S. Wen, and W. Ma, Appl. Therm. Eng. 125, 856 (2017).

    Article  Google Scholar 

  22. A. Ayachit and M.K. Kazimierczuk, IEEE Magn. Lett. 4, 0500304 (2013).

    Article  Google Scholar 

  23. T. Ozturk, J. Nondestruct. Eval. 38, 11 (2019).

    Article  Google Scholar 

  24. T. Ozturk, J. Hazard. Mater. 363, 309 (2019).

    Article  Google Scholar 

  25. M. Li and H. Li, IEEE Trans. Nanotechnol. 11, 1004 (2012).

    Article  Google Scholar 

  26. H. Ibach and H. Lüth, Solid-State Physics (Berlin: Springer, 2009).

    Book  Google Scholar 

  27. A. Sconza and G. Torzo, Eur. J. Phys. 10, 123 (1989).

    Article  Google Scholar 

  28. S. Kasap, Principles of Electronic Materials and Devices (New York: McGraw-Hill, 2005).

    Google Scholar 

  29. S.M. Morgan, N.A. El-Ghamaz, and M.A. Diab, J. Mol. Struct. 1160, 227 (2018).

    Article  Google Scholar 

  30. G. Kian Heng, Samarium Oxide and Samarium Oxynitride Thin Film Gate Oxides on Silicon Substrate Thesis Submitted in Fulfillment of the Requirements for the Degree of Doctor of Philosophy Faculty of Engineering University of Malaya Kuala Lumpur 2017, University of Malaya (2017).

  31. K.C. Chang, Y.C. Yeh, and J.T. Lue, Meas. J. Int. Meas. Confed. 45, 808 (2012).

    Article  Google Scholar 

  32. A. Paskaleva, D. Spassov, and P. Terziyska, J. Phys. Conf. Ser. 794, 012017 (2017).

    Article  Google Scholar 

  33. K.F. Young and H.P.R. Frederikse, J. Phys. Chem. Ref. Data 2, 313 (1973).

    Article  Google Scholar 

  34. M. Fernández-Perea, J.I. Larruquert, J.A. Aznárez, J.A. Méndez, L. Poletto, D. Garoli, A.M. Malvezzi, A. Giglia, and S. Nannarone, J. Opt. Soc. Am. A 24, 3691 (2007).

    Article  Google Scholar 

  35. J.I. Larruquert, A.P. Pérez-Marín, S. García-Cortés, L. Rodríguez-de Marcos, J.A. Aznárez, and J.A. Méndez, J. Opt. Soc. Am. A 28, 2340 (2011).

    Article  Google Scholar 

  36. N. Prasoetsopha, S. Pinitsoontorn, P. Thongbai, and T. Yamwong, Electron. Mater. Lett. 9, 347 (2013).

    Article  Google Scholar 

  37. D. Xue, K. Betzler, and H. Hesse, J. Phys. Condens. Matter 12, 3113 (2000).

    Article  Google Scholar 

  38. J.St. Jur, Lanthanide-Based Oxides and Silicates for High-K Gate Dielectric Applications, North Carolina State University (2007).

  39. V. Palenskis, World J. Condens. Matter Phys. 03, 73 (2013).

    Article  Google Scholar 

  40. T. Ozturk, Sak. Univ. J. Sci. 23, 724 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgut Ozturk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, T., Kilinc, E., Uysal, F. et al. Effects of Electrical Properties on Determining Materials for Power Generation Enhancement in TEG Modules. J. Electron. Mater. 48, 5409–5417 (2019). https://doi.org/10.1007/s11664-019-07386-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07386-1

Keywords

Navigation