Skip to main content
Log in

Investigation on Frequency Reconfigurability of a Microstrip Patch Antenna Using a Ni-Ti Shape Memory Alloy for an Automatic Fire Sprinkler System

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents frequency reconfigurability of a microstrip patch antenna using a nickel-titanium (Ni-Ti) shape memory alloy (SMA). It comprises a radiating patch made up of Ni-Ti SMA. It is characterized by differential scanning calorimetry, four-probe method and x-ray diffraction in order to evaluate transformation temperatures, electrical resistivity and different phases present in the material, respectively. Currently, a fire sprinkler system consists of a “wet alloy” which will expand when heated initially and then breaks allowing water to sprinkle onto the fire. The present work uses a two-way Ni-Ti SMA which is used to actuate the fire sprinkler system, triggers a sound alarm and is also able to send a message via SMS to the administrator. A microstrip patch antenna is designed, fabricated and measured for reflection coefficient, radiation pattern, and antenna gain at flat and bent configurations. The antenna operates at 2.4 GHz in the flat condition and 3.8 GHz in the bent configuration. This patch antenna can be used in fire alarms which actuate at 66°C and stop the fire without causing much damage. Unlike a conventional fire alarm system, proposed fire sprinkler designed with a Ni-Ti SMA can be reused several times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zhao and S. Riaz, IEEE Access 6, 41450 (2018). https://doi.org/10.1109/access.2018.2858442.

    Article  Google Scholar 

  2. J. Costantine, Y. Tawk, S.E. Barbin, and C.G. Christodoulou, Proc. IEEE 103, 3 (2015).

    Article  Google Scholar 

  3. J. Costantine, Y. Tawk, C.G. Christodoulou, and C.A. San Rafael, Design of Reconfigurable Antennas Using Graph Models (San Rafael: Morgan and Claypool Publishers, 2013), p. 1.

    Google Scholar 

  4. C.A. Balanis, Modern Antenna, Handbook (Hoboken: Wiley, 2011).

    Google Scholar 

  5. C.G. Christodoulou, Y. Tawk, S.A. Lane, and S.R. Erwin, Proc. IEEE 100, 2250 (2012).

    Article  Google Scholar 

  6. J.T. Bernhard, Reconfigurable Antennas (San Rafael: Morgan and Claypool Publishers, 2007).

    Book  Google Scholar 

  7. N. Haider, D. Caratelli, and A.G. Yarovoy, Int. J. Antennas Propag. (2013). https://doi.org/10.1155/2013/869170.

    Google Scholar 

  8. T. Li, H. Zhai, X. Wang, L. Li, and C. Liang, IEEE Antennas Wirel. Propag. Lett. 14, 171 (2015).

    Article  Google Scholar 

  9. S. Nikolaou, N.D. Kingsley, G.E. Ponchak, J. Papapolymerou, and M.M. Tentzeris, IEEE Trans. Antennas Propag. 57, 2242 (2009).

    Article  Google Scholar 

  10. B.A. Cetiner, G.R. Crusats, L. Jofre, and N. Bıyıklı, IEEE Trans. Antennas Propag. 58, 626 (2010).

    Article  Google Scholar 

  11. S. Soltani, P. Lotfi, and R.D. Murch, IEEE Trans. Antennas Propag. 64, 1209 (2016).

    Article  Google Scholar 

  12. A. Grau, J. Romeu, M.-J. Lee, S. Blanch, L. Jofre, and F. De Flaviis, IEEE Trans. Antennas Propag. 58, 4 (2010).

    Article  Google Scholar 

  13. Y. Tawk, J. Costantine, K. Avery, and C.G. Christodoulou, IEEE Trans. Antennas Propag. 59, 1773 (2011).

    Article  Google Scholar 

  14. H.T. Chattha, N. Aftab, M. Akram, N. Sheriff, Y. Huang, and Q.H. Abbasi, IET Microwav. Antennas Propag. 12, 2248 (2018).

    Article  Google Scholar 

  15. Z.-J. Jin, J.-H. Lim, and T.-Y. Yun, IET Microwav. Antennas Propag. 6, 1095 (2012).

    Article  Google Scholar 

  16. A.P. Saghati, M. Azarmanesh, and R. Zaker, IEEE Antennas Wirel. Propag. Lett. 9, 534 (2010).

    Article  Google Scholar 

  17. M.S. Khan, A.D. Capobianco, A. Naqvi, M.F. Shafique, B. Ijaz, and B.D. Braaten, Electron. Lett. 51, 963 (2015).

    Article  Google Scholar 

  18. A. Boukarkar, X.Q. Lin, Y. Jiang, and X.F. Yang, IEEE Antennas Wirel. Propag. Lett. 17, 1349 (2018).

    Article  Google Scholar 

  19. C. Wu, Z. Yang, Y. Li, Y. Zhang, and Y. Yashchyshyn, IEEE Access (2018). https://doi.org/10.1109/access.2018.2812139.

    Google Scholar 

  20. C.W. Jung, Y.J. Kim, Y.E. Kim, and F. De Flaviis, Electron. Lett. 43, 201 (2007).

    Article  Google Scholar 

  21. N. Nguyen-Trong, A. Piotrowski, and C. Fumeaux, IEEE Trans. Antennas Propag. 65, 3336 (2017).

    Article  Google Scholar 

  22. S.-L.S. Yang, A.A. Kishk, and K.-F. Lee, IEEE Antennas Wirel. Propag. Lett. 7, 127 (2008).

    Article  Google Scholar 

  23. M. Bromann, The Design and Layout of Fire Sprinkler Systems, 2nd ed. (Boca Raton: CRC Press, 2001).

    Book  Google Scholar 

  24. F. Wu, Y. Cui, F. Qu, and L. Mai, in Sixth International Conference on Intelligent Systems Design and Applications (2015), p. 389

  25. B. Lucian, C. Nicanor, L.N. Monica, and B. Leandru-Gheorghe, Mater. Sci. Forum 907, 8 (2017). https://doi.org/10.4028/www.scientific.net/MSF.907.8.

    Article  Google Scholar 

  26. P.J. Wolcott, Z. Wang, L. Zhang, and M.J. Dapino, J. Int. Mater. Syst. Struct. (2012). https://doi.org/10.1177/1045389x12461074.

    Google Scholar 

  27. S.J. Mazlouman, A. Mahanfar, C. Menon, and R.G. Vaughan, IEEE Trans. Antennas Propag. 59, 1070 (2011).

    Article  Google Scholar 

  28. J. Kowalewski, T. Mahler, L. Reichardt, and T. Zwick, IEEE Antennas Wirel. Propag. Lett. 12, 1598 (2013).

    Article  Google Scholar 

  29. S.J. Mazlouman, A. Mahanfar, C. Menon, and R.G. Vaughan, IEEE Trans. Antennas Propag. 60, 5627 (2012).

    Article  Google Scholar 

  30. H. Jianqiang, S. Lin, and F. Dai, IEEE Trans. Antennas Propag. 65, 2196 (2017).

    Article  Google Scholar 

  31. A.C. Bhasha, N.V.R. Reddy, and B. Rajnaveen, Int. J. Innov. Res. Adv. Stud. (IJIRAS) 4, 41 (2017).

    Google Scholar 

  32. C. Baytöre, M. Palandöken, and A. Kaya, in 16th Mediterranean Microwave Symposium (MMS), Abu Dhabi (2016). https://doi.org/10.1109/mms.2016.7803859

  33. Y.R. Mathew and B. Ganesh Babu, Trans. FAMENA XXXIX-3 ISSN 1333-1124, 9 (2015)

  34. S. Caizzone, C. Occhiuzzi, and G. Marrocco, IEEE Trans. Antennas Propag. 59, 2488 (2011).

    Article  Google Scholar 

  35. D. Stoeckel, in Proceedings Shape Memory Alloys for Power Systems EPRI (1995), pp. 1–13

  36. J. Peirs, D. Reynaerts, and H. Van Brussel, in Proceedings of 8th International Conference on Advanced Robotics (1997), pp. 155–160

  37. M. Colli, A. Bellini, C. Concari, A. Toscani, and G. Franceschini, in Proceedings of 32nd Annual IEEE Industrial Electronics IECON (2006), pp. 3987–3990

  38. J. Frenzel, E.P. George, A. Dlouhy, Ch Somsen, M.F.-X. Wagner, and G. Eggler, Acta. Mater. 58, 3444 (2010). https://doi.org/10.1016/j.actamat.2010.02.019.

    Article  Google Scholar 

  39. S. Rehman, M. Khan, A.N. Khan, S.H.I. Jaffery, L. Ali, and A. Mubashar, Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/434923.

    Google Scholar 

  40. K. Kus and T. Breczko, Mater. Phys. Mech. 1, 75 (2010).

    Google Scholar 

  41. N. Nayan, C.N. Govind, K.V. Saikrishna, S.K. Ramaiah, K.S. Bhaumik, N. Suseelan, and M.C. Mittal, Mater. Sci. Eng. A 465, 44 (2007).

    Article  Google Scholar 

  42. C.A. Balanis, Microstrip antennas—Antenna Theory, Analysis and Design, 2nd ed. (New York: Wiley, 1997).

    Google Scholar 

  43. Z. Wang, S. Fang, and S. Fu, ETRI J. (2010). https://doi.org/10.4218/etrij.10.0210.0089.

    Google Scholar 

  44. L.C. Ping and C.K. Chakrabarty, Res. J. Appl. Sci. Eng. Technol. (2014). https://doi.org/10.19026/rjaset.7.534.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Sumana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumana, L., Esther Florence, S. Investigation on Frequency Reconfigurability of a Microstrip Patch Antenna Using a Ni-Ti Shape Memory Alloy for an Automatic Fire Sprinkler System. J. Electron. Mater. 48, 5906–5918 (2019). https://doi.org/10.1007/s11664-019-07357-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07357-6

Keywords

Navigation