Journal of Electronic Materials

, Volume 48, Issue 8, pp 5279–5293 | Cite as

Structural, Optical and Electrical Properties of Ruddlesden Popper Oxide Ba2SnO4

  • Upendra Kumar
  • Shail UpadhyayEmail author


A study of structural, optical and electrical properties have been investigated in this paper. The powder and ceramic of Ruddlesden popper oxide Ba2SnO4 are prepared by the solid state ceramic route. Single phase of Ba2SnO4 has been obtained by calcination at 1000°C for 8 h. Rietveld refinement of powder x-ray diffraction data indicated the tetragonal crystal structure of calcined powder with lattice constants a = b = 4.1458 Å, c = 13.2899 Å. Further, the phase identification of powder is studied by Fourier transform infrared and Raman spectroscopy. Analysis of the obtained powder by transmission electron microscope reflected the spherical shape of the particle in the range (74 ± 8) nm. AC conductivity of ceramic follows the universal power law, \( \sigma = \sigma_{\rm{dc}} \left[ {1 + \left( {\frac{f}{{f_{\rm{H}} }}} \right)^{n} } \right] \). Temperature dependence behaviour of dc conductivity (\( \sigma_{\rm{dc}} \)) and hopping frequency (\( f_{\rm{H}} \)) indicated that the origin of dc conduction and ac conduction mechanisms are similar. Conductivity spectra at different temperatures scaled by Ghosh scaling \( \frac{{\sigma^{\prime } \left( f \right)}}{{\sigma_{\rm{dc}} }} = F\left( {\frac{f}{{f_{\rm{H}} }}} \right) \) perfectly follows the time temperature superposition principle. X-ray photoelectron spectroscopy analysis of ceramic indicated the presence of Ba in Ba2+, Sn in Sn4+ and Sn2+ and oxygen vacancies in the sample. Thermal expansion coefficient of the prepared ceramic is found to be 3.44 × 10−6/°K.


Ba2SnO4 Raman AC conductivity Ghosh scaling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Mr. Upendra Kumar is grateful to the Ministry of Human Resource and Development (MHRD), Government of India for the financial support in terms of a Senior Research Fellowship (SRF).


  1. 1.
    S.N. Ruddlesden and P. Popper, Acta Crystallogr. A 10, 538 (1957).CrossRefGoogle Scholar
  2. 2.
    D.P. Matheis and R.L. Snyder, Powder Diffr. 5, 8 (1990).CrossRefGoogle Scholar
  3. 3.
    W.H. Weber, C.R. Peters, and E.M. Logothetis, JOSA B 6, 455 (1989).CrossRefGoogle Scholar
  4. 4.
    M.A. Green, K. Prassides, P. Day, and D.A. Neumann, Int. J. Inorg. Mater. 2, 35 (2000).CrossRefGoogle Scholar
  5. 5.
    P.D. Battle, M.A. Green, N. Scott Laskey, J.E. Millburn, L. Murphy, M.J. Rosseinsky, S.P. Sullivan, and J.F. Vente, Chem. Mater. 9, 552 (1997).CrossRefGoogle Scholar
  6. 6.
    J. Wan, J.B. Goodenough, and J.H. Zhu, Solid State Ion. 178, 281 (2007).CrossRefGoogle Scholar
  7. 7.
    S. Choi, S. Yoo, J.-Y. Shin, and G. Kim, J. Electrochem. Soc. 158, B995 (2011).CrossRefGoogle Scholar
  8. 8.
    C. Navas and H.-C. zur Loye, Solid State Ion. 93, 171 (1996).CrossRefGoogle Scholar
  9. 9.
    A. Tarancón, M. Burriel, J. Santiso, S.J. Skinner, and J.A. Kilner, J. Mater. Chem. 20, 3799 (2010).CrossRefGoogle Scholar
  10. 10.
    J. Druce, H. Tellez, M. Burriel, M.D. Sharp, L.J. Fawcett, S.N. Cook, D.S. McPhail, T. Ishihara, H.H. Brongersma, and J.A. Kilner, Energy Environ. Sci. 7, 3593 (2014).CrossRefGoogle Scholar
  11. 11.
    B. Guan, W. Li, H. Zhang, and X. Liu, J. Electrochem. Soc. 162, F707 (2015).CrossRefGoogle Scholar
  12. 12.
    S. Takahashi, S. Nishimoto, M. Matsuda, and M. Miyake, J. Am. Ceram. Soc. 93, 2329 (2010).CrossRefGoogle Scholar
  13. 13.
    K. Ruck, G. Krabbes, and I. Vogel, Mater. Res. Bull. 34, 1689 (1998).CrossRefGoogle Scholar
  14. 14.
    M.T. Tlili, N. Chihaoui, M. Bejar, E. Dhahri, M.A. Valente, and E.K. Hlil, J. Alloys Compd. 509, 6447 (2011).CrossRefGoogle Scholar
  15. 15.
    B.J. Kennedy, Aust. J. Chem. 50, 917 (1997).CrossRefGoogle Scholar
  16. 16.
    H. Gao and Y. Wang, J. Mater. Res. 21, 1857 (2006).CrossRefGoogle Scholar
  17. 17.
    C. Jin, J. Liu, Y. Zhang, J. Sui, and W. Guo, J. Power Sources 182, 482 (2008).CrossRefGoogle Scholar
  18. 18.
    S. Omeiri, N. Allalou, G. Rekhila, Y. Bessekhouad, and M. Trari, Appl. Nanosci. 4, 959 (2014).CrossRefGoogle Scholar
  19. 19.
    R.C. Ropp, Luminescence and the Solid State, Vol. 12 (Amsterdam: Elsevier, 2013).Google Scholar
  20. 20.
    A. Marikutsa, M. Rumyantseva, A. Baranchikov, and A. Gaskov, Materials 8, 6437 (2015).CrossRefGoogle Scholar
  21. 21.
    U. Alaan, S. Padraic Shafer, A.T. N’Diaye, E. Arenholz, and Y. Suzuki, Appl. Phys. Lett. 108, 042106 (2016).CrossRefGoogle Scholar
  22. 22.
    S.G. Kang and D.S. Sholl, J. Alloys Compd. 693, 738 (2017).CrossRefGoogle Scholar
  23. 23.
    S.S. Shin, J.S. Kim, J.H. Suk, K.D. Lee, D.W. Kim, J.H. Park, I.S. Cho, K.S. Hong, and J.Y. Kim, ACS Nano 7, 1027 (2013).CrossRefGoogle Scholar
  24. 24.
    U. Kumar, M.J. Ansaree, A.K. Verma, S. Upadhyay, and G. Gupta, Mater. Res. Express 4, 116304 (2017).CrossRefGoogle Scholar
  25. 25.
    A. Stanulis, S. Sakirzanovas, M. Van Bael, and A. Kareiva, J. Sol-Gel. Sci. Technol. 64, 643 (2012).CrossRefGoogle Scholar
  26. 26.
    L.M. Kolchina, N.V. Lyskov, P.P. Pestrikov, S. Ya Istomin, G.N. Mazo, and E.V. Antipov, Mater. Chem. Phys. 165, 91 (2015).CrossRefGoogle Scholar
  27. 27.
    M.M. Mao, X.Q. Liu, and X.M. Chen, J. Am. Ceram. Soc. 94, 2506 (2011).CrossRefGoogle Scholar
  28. 28.
    U. Kumar and S. Upadhyay, Mater. Lett. 227, 100 (2018).CrossRefGoogle Scholar
  29. 29.
    D.P. Almond, G.K. Duncan, and A.R. West, Solid State Ion. 8, 159 (1983).CrossRefGoogle Scholar
  30. 30.
    R.M. Katiliute, P. Seibutas, M. Ivanov, R. Grigalaitis, A. Stanulis, J. Banys, and A. Kareiva, Ferroelectrics 464, 49 (2014).CrossRefGoogle Scholar
  31. 31.
    S. Upadhyay, O. Parkash, and D. Kumar, J. Alloys Compd. 432, 258 (2007).CrossRefGoogle Scholar
  32. 32.
    K. Fujii, Y. Esaki, K. Omoto, M. Yashima, A. Hoshikawa, T. Ishigaki, and J.R. Hester, Chem. Mater. 26, 2488 (2014).CrossRefGoogle Scholar
  33. 33.
    V. Thakur, A. Singh, A.M. Awasthi, and L. Singh, AIP Adv. 5, 087110 (2015).CrossRefGoogle Scholar
  34. 34.
    I. Kosacki, T. Suzuki, H.U. Anderson, and P. Colomban, Solid State Ion. 149, 99 (2002).CrossRefGoogle Scholar
  35. 35.
    B. Dalal, B. Sarkar, and S.K. De, J. Appl. Phys. 115, 203713 (2014).CrossRefGoogle Scholar
  36. 36.
    T. Maekawa, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 416, 214 (2006).CrossRefGoogle Scholar
  37. 37.
    A. Tarancón, D. Marrero-López, J. Peña-Martínez, J.C. Ruiz-Morales, and P. Núñez, Solid State Ion. 179, 611 (2008).CrossRefGoogle Scholar
  38. 38.
    B. Wei, Z. Lü, X. Huang, J. Miao, X. Sha, X. Xin, and S. Wenhui, J. Eur. Ceram. Soc. 26, 2827 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations