Skip to main content
Log in

Effect of Rare Earth Ions (R = Pr, Eu and Ho) on the Structural and Electrical Properties of Orthoferrites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The rare earth orthoferrites RFeO3 (R = Pr, Eu and Ho) were synthesized by the ceramic method. X-ray diffraction (XRD) was investigated to confirm the phase and orthorhombic structure with space group Pbnm. By varying rare earth ions, the lattice parameters and unit cell volume undergo non-monotonous changes. The slight shift in peaks towards higher 2θ for different R describes the lattice contraction, which is due to different ionic radii of the rare-earth ion in the samples. SEM (Scanning electron microscopy) micrographs reveal that the average grain size is lowest for HoFeO3. Dielectric studies reveal that the dielectric constant and dielectric loss decreases as the ionic radii of rare earth ion decreases. The ac conductivity shows that small polarons contribute to the conduction-mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Blasco, J. Stankiewicz, and J. Garcia, J. Solid State Chem. 179, 898 (2006).

    Article  Google Scholar 

  2. M.P. Pasternak, W.M. Xu, G.K. Rozenberg, and R.D. Taylor, Mat. Res. Soc. Symp Proc. 718 (2002).

  3. S.J. Luo, S.Z. Li, N. Zhang, T. Wei, X.W. Dong, K.F. Wang, and J.M. Liu, Thin Solid Films 519, 240 (2010).

    Article  Google Scholar 

  4. J.S. Zhou and J.B. Goodenough, Phys. Rev. B. 77, 132104 (2008).

    Article  Google Scholar 

  5. N. Singh, J.Y. Rhee, and S. Auluck, J. Korean Phys. Soc. 53, 806–811 (2008).

    Article  Google Scholar 

  6. J. Zaanen, G.A. Sawatzky, and J.W. Aleen, Phys. Rev. Lett. 55, 418 (1985).

    Article  Google Scholar 

  7. A. Tiwari, J. Alloy. Compd. 274, 42 (1998).

    Article  Google Scholar 

  8. W. Koebler, E. Wallan, and M. Wilkinson, Phys. Rev. 118, 58 (1960).

    Article  Google Scholar 

  9. D. Treves, J. Appl. Phys. 36, 1033 (1965).

    Article  Google Scholar 

  10. I. Plevy, H. Jacob, and L.Lewnson Uarne, J. Appl. Phys. 42, 1631 (1971).

    Article  Google Scholar 

  11. S.A. Patil, S.M. Otari, V.C. Mahajan, M.G. Patil, M.K. Sovdagas, B.L. Patil, and S.R. Swant, Solid State Commun. 78, 39 (1991).

    Article  Google Scholar 

  12. A.M. Glazer, Acta Crystallogr. Sect B StructCrystallogrCrystChem 28, 3384 (1972).

    Article  Google Scholar 

  13. B. Deka and S. Ravi, A. Perumal and Ceramics International, 43, 1323–1334 (2017).

  14. K.S. Aleksandrov and J. Bartolome, Phase Transit. 74, 255 (2001).

    Article  Google Scholar 

  15. R. White, J. Appl. Phys. 40, 1061 (1969).

    Article  Google Scholar 

  16. K. Sultan, M. Ikram, and K. Asokan, Vacuum 99, 251–258 (2014).

    Article  Google Scholar 

  17. Z. Habib, M. Ikram, K.Majid, and K. Asokan, Appl. Phys. A (2014).

  18. B. Lal, S.K. Khosa, R. Tickoo, K.K. Bamzai, and P.N. Kotru, Mater. Chem. Phys. 83, 158–168 (2004).

    Article  Google Scholar 

  19. D. Ravinder and K. Vijay Kumar, Bull. Mater. Sci. 24, 505–509 (2001).

    Article  Google Scholar 

  20. V. Hangloo, R. Tickoo, K.K. Bamzai, and P.N. Kotru, Mater. Chem. Phys. 81, 152–159 (2003).

    Article  Google Scholar 

  21. S. Bhat, S.K. Khosa, P.N. Kotru, and R.P. Tandon, J. Mater. Sci. Lett. 14, 564–567 (1995).

    Article  Google Scholar 

  22. A. Berenov, E. Angeles, J. Rossiny, E. Raj, J. Kilner, and A. Atkinson, Solid State Ionics 179, 1090–1093 (2008).

    Article  Google Scholar 

  23. K.K. Patankar, S.S. Joshi, and B.K. Chougule, Phys. Lett. A 346, 337 (2005).

    Article  Google Scholar 

  24. Feinleib Adler, J. Phys. Rev. B 2, 3312 (1970).

    Article  Google Scholar 

  25. L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, and S.R. Sehlin, Solid State Ionics 76, 273–283 (1995).

    Article  Google Scholar 

  26. T. Montini, M. Bevilacqua, E. Fonda, M.F. Casula, S. Lee, C. Tavagnacco, R.J. Gorte, and P. Fornasiero, Chem. Mater. 21, 1768–1774 (2009).

  27. S. Uhlenbruck and F. Tietz, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 107–282 (2004).

  28. S. Yamaguchi, Y. Okimoto, and Y. Tokura, Phys. Rev. B 54, R11022–R11025 (1996).

    Article  Google Scholar 

  29. J.S. Zhou and J.B. Goodenough, Phys. Rev. Lett. 94, 065501 (2005).

    Article  Google Scholar 

  30. J.B. Goodenough and J.S. Zhou, J. Mater. Chem. 17, 2394–2405 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very thankful to Director Inter University Accelerator Center, New Delhi for providing the required experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Sultan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultan, K., Samad, R., Islam, S.A.U. et al. Effect of Rare Earth Ions (R = Pr, Eu and Ho) on the Structural and Electrical Properties of Orthoferrites. J. Electron. Mater. 48, 6003–6007 (2019). https://doi.org/10.1007/s11664-019-07334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07334-z

Keywords

Navigation