Skip to main content
Log in

Thermally Aware Modeling and Performance Analysis of MLGNR as On-Chip VLSI Interconnect Material

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, a thermally aware electrical equivalent single conductor along with an analytical model to evaluate the parasitic parameters of multilayer graphene nanoribbon (MLGNR) as an on-chip very-large-scale integration interconnect is proposed and its performance is analyzed in terms of delay, power dissipation, and power delay product (PDP) with variable temperatures ranging from 200 K to 500 K for 32 nm, 22 nm, and 16 nm technology nodes. It was observed that with a rise in the temperature, there is a sharp decrease in the mean free path of the GNR interconnect, which further dominates its own resistance at variable global lengths (500–2000 μm) for all three technology nodes. The Simulation Program with Integrated Circuit Emphasis (SPICE) simulation tool is used to estimate and compare the performance of MLGNR in terms of signal delay, power dissipation, and PDP for three different technology nodes. It is revealed from the results that the propagation delay and PDP increase with increasing temperature. A similar analysis was also done for the copper interconnect and it was found that the MLGNR gives better performance in terms of delay, power dissipation, and PDP, at long interconnects (2000 μm) over a temperature range of 200–500 K for deep submicron technology nodes (32 nm, 22 nm, and 16 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Rossnagel and T.S. Kuan, J. Vac. Sci. Technol. B: Microelectron. Nano Struct. Proces. Measurem. Phenom. 22, 240 (2004).

    Article  Google Scholar 

  2. W. Steinhogl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, J. Appl. Phys. 97, 023706 (2005).

    Article  Google Scholar 

  3. E.T. Ogawa, L. Ki-Don, V.A. Blaschke, and P.S. Ho, IEEE Trans. Reliab. 51, 403 (2002).

    Article  Google Scholar 

  4. J.A. Davis and J.D. Meindl, Interconnect Technology and Design for Gigascale Integration, 1st ed. (Berlin: Springer Science & Business Media, 2003), pp. 1–398.

    Book  Google Scholar 

  5. F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, and W. Honlein, Microelectron. Eng. 64, 399 (2002).

    Article  Google Scholar 

  6. N. Srivastava and K. Banerjee, in Proceedings of the IEEE/ACM International conference on Computer-aided design. IEEE Computer Society (2005), pp. 383–390

  7. M.K. Rai and S. Sarkar, Physic. Status Solid. (a) 208, 735 (2011).

    Article  Google Scholar 

  8. M.K. Rai and S. Sarkar, J. Comput. Electron. 12, 796 (2013).

    Article  Google Scholar 

  9. H. Li, W.Y. Yin, K. Banerjee, and J.F. Mao, IEEE Trans. Electron. Devices 55, 1328 (2008).

    Article  Google Scholar 

  10. A. Naeemi and J.D. Meindl, in Interconnect Technology Conference, IITC International. IEEE (2008), pp. 183–185

  11. A.K. Geim and K.S. Novoselov, Nanosci. Technol. Collect. Rev. Nat. J. 11, 183 (2010).

  12. S. Rakheja, V. Kumar, and A. Naeemi, in Proceedings of the IEEE (2013), pp. 1740–1765.

  13. N. Srivastava and K. Banerjee, JOM 56, 30 (2004).

    Article  Google Scholar 

  14. J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Phys. Rev. B 59, R2514 (1999).

    Article  Google Scholar 

  15. P. Kim, L. Shi, A. Majumder, and P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).

    Article  Google Scholar 

  16. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Tewldebrham, F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).

    Article  Google Scholar 

  17. C. Xu, H. Li, and K. Banerjee, IEEE Trans. Electron Devices 56, 1567 (2009).

    Article  Google Scholar 

  18. H. Li, X. Xu, N. Srivastava, and K. Banerjee, IEEE Trans. Electron. Devices 56, 1799 (2009).

    Article  Google Scholar 

  19. V. Kumar, S. Rakheja, A. Naeemi, and I.E.E.E. Trans, Electron. Devices 59, 2753 (2012).

    Article  Google Scholar 

  20. T. Ragheb and Y. Massoud, in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. IEEE Press (2008), pp. 593–597.

  21. W.S. Zhao, W.Y. Yin, and I.E.E.E. Trans, Electromagn. Compat. 56, 638 (2014).

    Article  Google Scholar 

  22. K. Singh and B. Raj, J. Electron. Mater. 44, 4825 (2015).

    Article  Google Scholar 

  23. K. Singh and B. Raj, J. Comput. Electron. 14, 469 (2015).

    Article  Google Scholar 

  24. V.R. Kumar, M.K. Majumder, N.R. Kukkam, and B.K. Kaushik, IEEE Trans. Nanotechnol. 14, 484 (2015).

    Article  Google Scholar 

  25. M.Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  26. A. Naeemi and J.D. Meindl, IEEE Trans. Electron Devices 56, 1822 (2009).

    Article  Google Scholar 

  27. D. Gunlycke, H.M. Lawler, and C.T. White, Phys. Rev. B 75, 085418 (2007).

    Article  Google Scholar 

  28. V. Perebeinos and P. Avouris, Phys. Rev. B 81, 195442 (2010).

    Article  Google Scholar 

  29. J.P. Cui, W.S. Zhao, W.Y. Yin, J. Hu, and I.E.E.E. Trans, Electromagn. Compat. 54, 126 (2012).

    Article  Google Scholar 

  30. M.K. Rai, B.K. Kaushik, and S. Sankar, J. Comput. Electron. 15, 407 (2016).

    Article  Google Scholar 

  31. Predictive technology model, http://ptm.asu.edu. Accessed 01 December, 2018.

  32. D. Das, H. Rahaman, and I.E.E.E. Trans, Nanotechnol. 10, 1362 (2011).

    Google Scholar 

  33. ITRS, International Technology Roadmap for Semiconductor, Edition (2013), http://www.itrs2.net/itrs-reports.html. Accessed 01 December, 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karmjit Singh Sandha.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H., Sandha, K.S. Thermally Aware Modeling and Performance Analysis of MLGNR as On-Chip VLSI Interconnect Material. J. Electron. Mater. 48, 4902–4912 (2019). https://doi.org/10.1007/s11664-019-07281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07281-9

Keywords

Navigation