Skip to main content
Log in

Thermally Induced Carrier Distribution in a Piezoelectric Semiconductor Fiber

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We study the effects of a uniform temperature change on the electromechanical fields associated with the extensional deformation of a piezoelectric semiconductor fiber. The macroscopic theory of thermo-piezoelectric semiconductors is used. Based on the three-dimensional equations, we develop a one-dimensional model for thin piezoelectric semiconductor fibers incorporating thermoelasticity, piezoelectricity, and pyroelectricity. Through a theoretical analysis, it is shown that under a temperature change the carriers in the fiber redistribute themselves under the electric field produced through thermoelastic, pyroelectric and piezoelectric effects. This phenomenon of thermally induced redistribution of charge carriers may be called thermo-piezotronic effect. It suggests the possibility of sensing or transduction between a temperature change and electric currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.S. Hickernell and I.E.E.E. Trans, Ultrason. Ferroelectr Control 52, 737 (2005).

    Article  Google Scholar 

  2. Z.L. Wang, Adv. Mater. 15, 432 (2003).

    Article  Google Scholar 

  3. X.N. Wen, W.Z. Wu, Y. Ding, and Z.L. Wang, Adv. Mater. 25, 3371 (2013).

    Article  Google Scholar 

  4. K.Y. Lee, B. Kumar, J.-S. Seo, K.-H. Kim, J.I. Sohn, S.N. Cha, D. Choi, Z.L. Wang, and S.-W. Kim, Nano Lett. 12, 1959 (2012).

    Article  Google Scholar 

  5. P.X. Gao, J.H. Song, J. Liu, and Z.L. Wang, Adv. Mater. 19, 67 (2007).

    Article  Google Scholar 

  6. M.Y. Choi, D. Choi, M.J. Jin, I. Kim, S.H. Kim, J.Y. Choi, S.Y. Lee, J.M. Kim, and S.W. Kim, Adv. Mater. 21, 2185 (2009).

    Article  Google Scholar 

  7. G. Romano, G. Mantini, A.D. Garlo, A. D’Amico, C. Falconi, and Z.L. Wang, Nanotechnology 22, 465401 (2011).

    Article  Google Scholar 

  8. S. Buyukkose, A. Hernandez-Minguez, B. Vratzov, C. Somaschini, L. Geelhaar, H. Riechert, W.G. van der Wiel, and P.V. Santos, Nanotechnology 25, 135204 (2014).

    Article  Google Scholar 

  9. X.D. Wang, J. Zhou, J.H. Song, J. Liu, N.S. Xu, and Z.L. Wang, Nano Lett. 6, 2768 (2006).

    Article  Google Scholar 

  10. Z.L. Wang, Nano Today 5, 540 (2010).

    Article  Google Scholar 

  11. J. Yu, S.J. Ippolito, W. Wlodarski, M. Strano, and K. Kalantar-Zadeh, Nanotechnology 21, 265502 (2010).

    Article  Google Scholar 

  12. Y. Liu, Y. Zhang, Q. Yang, S.M. Niu, and Z.L. Wang, Nano Energy 14, 257 (2015).

    Article  Google Scholar 

  13. Z.L. Wang and W.Z. Wu, Nat. Sci. Rev. 1, 62 (2014).

    Article  Google Scholar 

  14. Z.L. Wang, W.Z. Wu, and C. Falconi, MRS Bull. 43, 922 (2018).

    Article  Google Scholar 

  15. R. Afraneo, G. Lovat, P. Burghignoli, and C. Falconi, Adv. Mater. 24, 4719 (2012).

    Article  Google Scholar 

  16. C.L. Zhang, X.Y. Wang, W.Q. Chen, and J.S. Yang, Smart Mater. Struct. 26, 025030 (2017).

    Article  Google Scholar 

  17. C.L. Zhang, Y.X. Luo, R.R. Cheng, and X.Y. Wang, MRS Adv. 2, 3421 (2017).

    Article  Google Scholar 

  18. Y.X. Luo, C.L. Zhang, W.Q. Chen, and J.S. Yang, J. Appl. Phys. 122, 204502 (2017).

    Article  Google Scholar 

  19. Y.X. Luo, C.L. Zhang, W.Q. Chen, and J.S. Yang, Nano Energy 54, 341 (2018).

    Article  Google Scholar 

  20. R.R. Cheng, C.L. Zhang, W.Q. Chen, and J.S. Yang, J. Appl. Phys. 124, 064506 (2018).

    Article  Google Scholar 

  21. G.Y. Yang, J.K. Du, J. Wang, and J.S. Yang, Acta Mech. 229, 4663 (2018).

    Article  Google Scholar 

  22. G.L. Wang, J.X. Liu, C.X.L. Liu, W.J. Feng, and J.S. Yang, J. Appl. Phys. 124, 094502 (2018).

    Article  Google Scholar 

  23. W.L. Yang, Y.T. Hu, and J.S. Yang, Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aaecbb.

    Google Scholar 

  24. Y.F. Gao and Z.L. Wang, Nano Lett. 7, 2499 (2007).

    Article  Google Scholar 

  25. Y.F. Gao and Z.L. Wang, Nano Lett. 9, 1103 (2009).

    Article  Google Scholar 

  26. S.Q. Fan, Y.X. Liang, J.M. Xie, and Y.T. Hu, Nano Energy 40, 82 (2017).

    Article  Google Scholar 

  27. X.Y. Dai, F. Zhu, Z.H. Qian, and J.S. Yang, Nano Energy 43, 22 (2018).

    Article  Google Scholar 

  28. G.Y. Yang, J.K. Du, J. Wang, and J.S. Yang, J. Mech. Mater. Struct. 13, 103 (2018).

    Article  Google Scholar 

  29. B.A. Auld, Acoustic Fields and Waves in Solids, Vol. I (New York: Wiley, 1973).

    Google Scholar 

  30. R.F. Pierret, Semiconductor Fundamentals, 2nd ed. (Reading: Addison-Wesley, 1988).

    Google Scholar 

  31. A.C. Eringen and G.A. Maugin, Electrodynamics of Continua I (New York: Springer, 1989).

    Google Scholar 

  32. J. Sladek, V. Sladek, E. Pan, and M. Wünsche, Eng. Fract. Mech. 126, 27 (2014).

    Article  Google Scholar 

  33. K.-H. Hellwege and A.M. Hellwege, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology Group III Crystal and Solid State Physics (Berlin: Springer, 1979).

    Google Scholar 

  34. J. Albertsson, S.C. Abrahams, and Å. Kvick, Acta Crystallogr. B 45, 34 (1989).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 11672265 and 11621062), the Fundamental Research Funds for the Central Universities (Nos. 2016QNA4026 and 2016XZZX001-05), and the Science and Technology Innovation Committee of Shenzhen (No. JCYJ20180227175523802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunli Zhang or Jiashi Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, R., Zhang, C. & Yang, J. Thermally Induced Carrier Distribution in a Piezoelectric Semiconductor Fiber. J. Electron. Mater. 48, 4939–4946 (2019). https://doi.org/10.1007/s11664-019-07280-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07280-w

Keywords

Navigation