Skip to main content
Log in

Proximity-Coupled Graphene-Patch-Based Tunable Single-/Dual-Band Notch Filter for THz Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A tunable single-/dual-band notch filter is proposed for THz applications. The filter geometry contains a proximity-coupled graphene patch. The filter structure operates with propagating- and nonpropagating-type transverse magnetic (\( {\hbox{TM}} \)) modes. Different higher-order \( {\hbox{TM}}_{mn} \) (where \( m \) and \( n \) are integers) modes can be excited in the filter structure by changing the aspect ratio of the graphene patch, thus enabling the filter response to be tuned to obtain single- or dual-band notch characteristics. Appropriate selection of the physical parameters of the filter structure allows the desired response at different frequencies to be obtained. Furthermore, the response of the proposed band notch filter can be tuned over frequency by changing the chemical potential of the graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Cicchetti, E. Miozzi, and O. Testa, Int. J. Antennas Propag. 2017, 1 (2017).

    Google Scholar 

  2. T. Low and P. Avouris, ACS Nano 8, 1086 (2014).

    Article  Google Scholar 

  3. G. Varshney, A. Verma, V.S. Pandey, R.S. Yaduvanshi, and R. Bala, Opt. Mater. (Amst). 85, 456 (2018).

    Article  Google Scholar 

  4. M. Walther, D.G. Cooke, C. Sherstan, M. Sherstan, M. Hajar, M.R. Freeman, and F.A. Hegmann, Phys. Rev. B Condens. Matter Mater. Phys. 76, 1 (2007).

    Article  Google Scholar 

  5. D.M. Pozar, Microwave Engineering, 4th ed. (London: Wiley, 2005).

    Google Scholar 

  6. P. Article, Nat. Mater. 6, 183 (2007).

    Article  Google Scholar 

  7. I. Soto Lamata, P. Alonso-González, R. Hillenbrand, and A.Y. Nikitin, ACS Photon. 2, 280 (2015).

    Article  Google Scholar 

  8. X. Luo, T. Qiu, W. Lu, and Z. Ni, Mater. Sci. Eng. R Rep. 74, 351 (2013).

    Article  Google Scholar 

  9. A. Vakil and N. Engheta, Science 80, 1291 (2011).

    Article  Google Scholar 

  10. D. Correas-Serrano and J.S. Gomez-Diaz, Forum Electromagn Res. Methods Appl. Technol. Graphene Based 7, 60 (2017).

    Google Scholar 

  11. B. Sensale-Rodriguez, R. Yan, M.M. Kelly, T. Fang, K. Tahy, W.S. Hwang, D. Jena, L. Liu, and H.G. Xing, Nat. Commun. 3, 780 (2012).

    Article  Google Scholar 

  12. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, Nat. Nanotechnol. 7, 330 (2012).

    Article  Google Scholar 

  13. P.Y. Chen, C. Argyropoulos, and A. Alu, IEEE Trans. Antennas Propag. 61, 1528 (2013).

    Article  Google Scholar 

  14. P.Y. Chen and A. Alù, ACS Nano 5, 5855 (2011).

    Article  Google Scholar 

  15. F. Rana, IEEE Trans. Nanotechnology 7, 91 (2008).

    Google Scholar 

  16. X. Zhou, T. Zhang, L. Chen, W. Hong, and X. Li, J. Light. Technol. 32, 3597 (2014).

    Google Scholar 

  17. J.S. Gómez-Díaz and J. Perruisseau-Carrier, J. Appl. Phys. 112, 114915 (2012).

    Article  Google Scholar 

  18. M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B Condens. Matter Mater. Phys. 80, 1 (2009).

    Article  Google Scholar 

  19. Y. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H. Chiu, A. Grill, and P. Avouris, Nano 327, 100 (2010).

    Google Scholar 

  20. R. Murali, K. Brenner, Y. Yang, T. Beck, and J.D. Meindl, IEEE Electron Device Lett. 30, 611 (2009).

    Article  Google Scholar 

  21. A.C. Guyette, E.J. Naglich, and S. Shin, IEEE Trans. Microw. Theory Tech. 65, 1534 (2017).

    Article  Google Scholar 

  22. S. Jeong, J. Lee, and S. Member, IEEE Trans. Microw. Theory Tech. 66, 943 (2018).

    Article  Google Scholar 

  23. J.-X. Chen, J. Shi, Z.-H. Bao, and Q. Xue, Prog. Electromagn. Res. 111, 25 (2011).

    Article  Google Scholar 

  24. M. Esmaeili and J. Bornemann, IEEE. Microw. Wirel. Compon. Lett. 27, 40 (2017).

    Article  Google Scholar 

  25. X.Y. Zhang, C.H. Chan, Q. Xue, and B.J. Hu, IEEE Trans. Ind. Electron 59, 1257 (2012).

    Article  Google Scholar 

  26. D. Wu, N. Fang, C. Sun, X. Zhang, W.J. Padilla, D.N. Basov, D.R. Smith, and S. Schultz, Appl. Phys. Lett. 83, 201 (2003).

    Article  Google Scholar 

  27. D. Correas-Serrano, J.S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, IEEE Trans. Nanotechnology 13, 1145 (2014).

    Google Scholar 

  28. A. Ghahremani and G. Moradi, Appl. Opt. 57, 7823 (2018).

    Article  Google Scholar 

  29. Y. Yao, X. Cheng, S.-W. Qu, J. Yu, and X. Chen, IET Microw. Antennas Propag. 10, 1570 (2016).

    Article  Google Scholar 

  30. J.X. Zhuang, W. Hong, Z.C. Hao, in 2015 IEEE International Wireless Symposium (IWS 2015) (2015).

  31. J. Cunningham, C. Wood, A.G. Davies, I. Hunter, E.H. Linfield, and H.E. Beere, Appl. Phys. Lett. 86, 1 (2005).

    Google Scholar 

  32. M. Kong, Y. Wu, Z. Zhuang, W. Wang, Y. Liu, and S.E.L. Resonator, Prog. Electromagn. Res. Lett. 71, 141 (2017).

    Article  Google Scholar 

  33. V. Dmitriev, G. Tavares, and C. Nascimento, in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings (2015)

  34. P.Y. Chen, M. Farhat, A.N. Askarpour, M. Tymchenko, and A. Alú, J. Opt. 16, 094008 (2014).

    Article  Google Scholar 

  35. G.W. Hanson, IEEE Trans. Antennas Propag. 56, 747 (2008).

    Article  Google Scholar 

  36. G.W. Hanson, J. Appl. Phys. 103, 1 (2008).

    Article  Google Scholar 

  37. L.A. Falkovsky and S.S. Pershoguba, Phys. Rev. B Condens. Matter Mater. Phys. 76, 1 (2007).

    Article  Google Scholar 

  38. Y.S. Cao, L.J. Jiang, and A.E. Ruehli, IEEE Trans. Antennas Propag. 64, 1385 (2016).

    Article  Google Scholar 

  39. T. Fang, A. Konar, H. Xing, and I.D. Jena, Appl. Phys. Lett. 91, 092109 (2016).

    Article  Google Scholar 

  40. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, and J. Hone, Nat. Nanotechnol. 5, 722 (2010).

    Article  Google Scholar 

  41. Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R.I. Stantchev, E. Pickwell-MacPherson, and J. Bin Xu, Nat. Commun. 9, 4909 (2018).

    Article  Google Scholar 

  42. X. Wan, K. Chen, D. Liu, J. Chen, Q. Miao, and J. Xu, Chem. Mater. 24, 3906 (2012).

    Article  Google Scholar 

  43. J.S. Gomez-Diaz, C. Moldovan, S. Capdevila, J. Romeu, L.S.S. Bernard, A. Magrez, A.M.M. Ionescu, and J. Perruisseau-Carrier, Nat. Commun. 6, 1 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Ankit Pandey, NIT Delhi and Dr. Shatrughan Kumar, MITS Madnapalle, Andhra Pradesh for necessary discussion about the research work, and to MITS Madnapalle, Andhra Pradesh and NIT Delhi, for providing support for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Varshney.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshney, G., Gotra, S., Pandey, V.S. et al. Proximity-Coupled Graphene-Patch-Based Tunable Single-/Dual-Band Notch Filter for THz Applications. J. Electron. Mater. 48, 4818–4829 (2019). https://doi.org/10.1007/s11664-019-07274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07274-8

Keywords

Navigation