Skip to main content

Advertisement

Log in

Molecular Design of D-π-A-A Organic Dyes Based on Triphenylamine Derivatives with Various Auxiliary Acceptors for High Performance DSSCs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, 11 newly designed organic dyes with D-π-A-A structure based on a 3D triphenylamine derivative known as indacenodithiophene-triphenylamine (IDTTPA) as a core, benzoic acid as the anchoring group and linked by various spacer fragments containing electron-acceptor character have been theoretically studied using density functional theory (DFT) and time-dependent DFT (TD-DFT) for dye-sensitized solar cells (DSSCs). This three-dimensional structure is very important in retarding dyes aggregation and charge recombination, besides enhancing the power conversion efficiency (PCE) of DSSC, we have further employed various auxiliary acceptors to facilitate the electron transfer from the donor to the acceptor. Seven different functionals containing 0–100% Hartree–Fock (HF) exchange and three solvent models have been tested in this study. Comparison between computational and experimental absorption of D1 indicates that the maximum wavelength was accurately reproduced by a BHandHLYP functional and solvation model based on density (SMD) solvent model. The molecular structures, energy levels, absorption spectra, light harvesting efficiency (LHE) and driving force of injection (ΔGinject) are calculated. To sum up, these results indicate that the addition of an auxiliary acceptor into the core of the dye molecule has a significant effect on several properties including the planarity showed in this investigation, the decreasing in gap energy of 1.15 eV, and a bathochromic shift of 180 nm. It was found that the dye D4 with auxiliary acceptor 1,2,5-thiadiazolo[3,4-d]pyridazine shows a strong tendency to planarization, and possess the lowest values for bandgap of and open-circuit photovoltage 1.544 eV and 0.733 eV, respectively, the highest \( \Delta G^{\rm{inject}} \) value (− 1.23 eV) and a maximum wavelength absorption of 608.85 nm, which makes this dye exhibits positive results and can be used as a promising candidate for DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Yao, M. Zhang, H. Wu, L. Yang, R. Li, and P. Wang, J. Am. Chem. Soc. 137, 3799 (2015).

    Article  Google Scholar 

  2. B. O’Regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  3. B. Xu, D. Bi, Y. Hua, P. Liu, M. Cheng, M. Grätzel, L. Kloo, A. Hagfeldt, and L. Sun, Energy Environ. Sci. 9, 873 (2016).

    Article  Google Scholar 

  4. I.N. Obotowo, I.B. Obot, and U.J. Ekpe, J. Mol. Struct. 1122, 80 (2016).

    Article  Google Scholar 

  5. N. Li, N. Pan, D. Li, and S. Lin, Int. J. Photoenergy 2013, 5 (2013).

    Google Scholar 

  6. C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S.M. Zakeeruddin, and M. Grätzel, ACS Nano 3, 3103 (2009).

    Article  Google Scholar 

  7. M. Tercan and O. Dayan, J. Electron. Mater. 1 (2018)

  8. W.-Q. Wu, Y.-F. Xu, H.-S. Rao, C.-Y. Su, and D.-B. Kuang, J. Am. Chem. Soc. 136, 6437 (2014).

    Article  Google Scholar 

  9. A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, Science 334, 629 (2011).

    Article  Google Scholar 

  10. A. Mishra, M.K.R. Fischer, and P. Bäuerle, Angew. Chemie Int. Ed. 48, 2474 (2009).

    Article  Google Scholar 

  11. Y. Ooyama and Y. Harima, European. J. Org. Chem. 2009, 2903 (2009).

    Google Scholar 

  12. S. Haid, M. Marszalek, A. Mishra, M. Wielopolski, J. Teuscher, J.-E. Moser, R. Humphry-Baker, S.M. Zakeeruddin, M. Grätzel, and P. Bäuerle, Adv. Funct. Mater. 22, 1291 (2012).

    Article  Google Scholar 

  13. N. Cai, Y. Wang, M. Xu, Y. Fan, R. Li, M. Zhang, and P. Wang, Adv. Funct. Mater. 23, 1846 (2013).

    Article  Google Scholar 

  14. S. Ahmad, E. Guillén, L. Kavan, M. Grätzel, and M.K. Nazeeruddin, Energy Environ. Sci. 6, 3439 (2013).

    Article  Google Scholar 

  15. D. Seo, K.-W. Park, J. Kim, J. Hong, and K. Kwak, Comput. Theor. Chem. 1081, 30 (2016).

    Article  Google Scholar 

  16. W. Zhu, Y. Wu, S. Wang, W. Li, X. Li, J. Chen, Z. Wang, and H. Tian, Adv. Funct. Mater. 21, 756 (2011).

    Article  Google Scholar 

  17. H. Choi, C. Baik, S.O. Kang, J. Ko, M.-S. Kang, M.K. Nazeeruddin, and M. Grätzel, Angew. Chemie. 120, 333 (2008).

    Article  Google Scholar 

  18. J. Tang, W. Wu, J. Hua, J. Li, X. Li, and H. Tian, Energy Environ. Sci. 2, 982 (2009).

    Article  Google Scholar 

  19. B.-G. Kim, C.-G. Zhen, E.J. Jeong, J. Kieffer, and J. Kim, Adv. Funct. Mater. 22, 1606 (2012).

    Article  Google Scholar 

  20. B.-G. Kim, K. Chung, and J. Kim, Chem. A Eur. J. 19, 5220 (2013).

    Article  Google Scholar 

  21. Y. Wu, W.-H. Zhu, S.M. Zakeeruddin, and M. Gratzel, ACS Appl. Mater. Interfaces 7, 9307 (2015).

    Article  Google Scholar 

  22. Y. Wu and W. Zhu, Chem. Soc. Rev. 42, 2039 (2013).

    Article  Google Scholar 

  23. Z. Liu, K. Duan, H. Guo, Y. Deng, H. Huang, X. Yi, H. Chen, and S. Tan, Dye Pigment. 140, 312 (2017).

    Article  Google Scholar 

  24. S. Chaurasia, C.-Y. Hsu, H.-H. Chou, and J.T. Lin, Org. Electron. 15, 378 (2014).

    Article  Google Scholar 

  25. S. ElKhattabi, A. Fitri, A.T. Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi, and M. Bouachrine, J. Mater. Environ. Sci. 9, 841 (2018).

    Google Scholar 

  26. MJ. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery, T. Vreven, K. Kudin, J. Burant, J. Millam, S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. Knox, H. Hratchian, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Ayala, K. Morokuma, G. Voth, P. Salvador, J. Dannenberg, V. Zakrzewski, S. Dapprich, A. Daniels, M. Strain, O. Farkas, D. Malick, A. Rabuck, K. Raghavachari, J. Foresman, J. Ortiz, Q. Cui, A. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Martin, D. Fox, T. Keith, A. Laham, C. Peng, A. Nanayakkara, M. Challacombe, P. Gill, B. Johnson, W. Chen, M. Wong, C. Gonzalez, and J. Pople, Gaussian 09, Gaussian Inc., Wallingford CT, 200 (2009).

  27. C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B. 37, 785 (1988).

    Article  Google Scholar 

  28. A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  Google Scholar 

  29. J. Wang, F.Q. Bai, B.H. Xia, L. Feng, H.X. Zhang, and Q.J. Pan, Phys. Chem. Chem. Phys. 13, 2206 (2011).

    Article  Google Scholar 

  30. C. Jia, Z. Wan, J. Zhang, Z. Li, X. Yao, and Y. Shi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 86, 387 (2012).

    Article  Google Scholar 

  31. J. Preat, C. Michaux, D. Jacquemin, and E.A. Perpète, J. Phys. Chem. C 113, 16821 (2009).

    Article  Google Scholar 

  32. J. Preat, J. Phys. Chem. C 114, 16716 (2010).

    Article  Google Scholar 

  33. Z. Wan, C. Jia, J. Zhang, Y. Duan, Y. Lin, and Y. Shi, J. Power Sources 199, 426 (2012).

    Article  Google Scholar 

  34. R. Tarsang, V. Promarak, T. Sudyoadsuk, S. Namuangruk, and S. Jungsuttiwong, J. Photochem. Photobiol. A Chem. 273, 8 (2014).

    Article  Google Scholar 

  35. C.-C. Chiu, Y.-C. Sheng, W.-J. Lin, R. Juwita, C.-J. Tan, and H.-H.G. Tsai, ACS Omega 3, 433 (2018).

    Article  Google Scholar 

  36. J. Zhang, Y.H. Kan, H.B. Li, Y. Geng, Y. Wu, and Z.M. Su, Dye Pigment. 95, 313 (2012).

    Article  Google Scholar 

  37. H.C. Zhu, C.F. Li, Z.H. Fu, S.S. Wei, X.F. Pre, and J. Zhang, Appl. Surf. Sci. 455, 1095 (2018).

    Article  Google Scholar 

  38. J.B. Foresman and Æ. Frisch 3rd, eds., Gaussian Inc (CT: Wallingford, 2015).

    Google Scholar 

  39. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).

    Article  Google Scholar 

  40. Y. Wen, W. Wu, Y. Li, W. Zhang, Z. Zeng, L. Wang, and J. Zhang, J. Power Sources 326, 193 (2016).

    Article  Google Scholar 

  41. M. Ernzerhof and G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999).

    Article  Google Scholar 

  42. Y. Zhao and D.G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

    Article  Google Scholar 

  43. O.A. Vydrov and G.E. Scuseria, J. Chem. Phys. 125, 234109 (2006).

    Article  Google Scholar 

  44. O.A. Vydrov, J. Heyd, A.V. Krukau, and G.E. Scuseria, J. Chem. Phys. 125, 74106 (2006).

    Article  Google Scholar 

  45. T. Yanai, D.P. Tew, and N.C. Handy, Chem. Phys. Lett. 393, 51 (2004).

    Article  Google Scholar 

  46. J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).

    Article  Google Scholar 

  47. C.M. Aono, M.D. Coutinho-Neto, R. Miotto, and P. Homem-de-Mello, J. Phys. Chem. C 122, 27256 (2018).

    Article  Google Scholar 

  48. J. Grant Hill, Int. J. Quantum Chem. 113, 21 (2013).

    Article  Google Scholar 

  49. T.A. Nguyên, Frontier Orbitals: A Practical Manual (London: Wiley, 2007).

    Google Scholar 

  50. Y.K. Eom, J.Y. Hong, J. Kim, and H.K. Kim, Dye Pigment. 136, 496 (2017).

    Article  Google Scholar 

  51. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).

    Article  Google Scholar 

  52. M. Cossi, N. Rega, G. Scalmani, and V. Barone, J. Comput. Chem. 24, 669 (2003).

    Article  Google Scholar 

  53. A. Rubio and A. Marquez, Phys. Chem. Chem. Phys. 11, 4436 (2009).

    Article  Google Scholar 

  54. A. Justyniarski, J.K. Zaręba, P. Hańczyc, P. Fita, M. Chołuj, R. Zaleśny, and M. Samoć, J. Mater. Chem. C. 6, 4384 (2018).

    Article  Google Scholar 

  55. C. Zhu and L. Fang, Macromol. Rapid Commun. 39, 1700241 (2018).

    Article  Google Scholar 

  56. U. Mehmood, I.A. Hussein, M. Daud, S. Ahmed, and K. Harrabi, Dyes Pigment 118, 152 (2015).

    Article  Google Scholar 

  57. G. Zhang, Y. Bai, R. Li, D. Shi, S. Wenger, S.M. Zakeeruddin, M. Grtzel, and P. Wang, Energy Environ. Sci. 2, 92 (2009).

    Article  Google Scholar 

  58. L. Zhang, K. Pei, H. Zhao, S. Wu, Y. Wang, and J. Gao, Chem. Phys. Lett. 543, 199 (2012).

    Article  Google Scholar 

  59. H. Kusama, H. Orita, and H. Sugihara, Langmuir 24, 4411 (2008).

    Article  Google Scholar 

  60. M. Bourass, A. Fitri, A.T. Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi, F. Serein-Spirau, T. Jarrosson, J.P. Lère-Porte, J.M. Sotiropoulos, and M. Bouachrine, Der Pharma Chem. 5, 144 (2013).

    Google Scholar 

  61. A. Fitri, A.T. Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi, and M. Bouachrine, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 124, 646 (2014).

    Article  Google Scholar 

  62. A. Fitri, A.T. Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi, and M. Bouachrine, J. Mater. Environ. Sci. 7, 835 (2016).

    Google Scholar 

  63. M. Bourass, A.T. Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi, S.M. Bouzzine, and M. Bouachrine, Chem. Cent. J. 10, 67 (2016).

    Article  Google Scholar 

  64. H. Sadki, M. Bourass, M.N. Bennani, and M. Bouachrine, Res. Chem. Intermed. 44, 6071 (2018)

  65. D. Chattopadhyay, S. Lastella, S. Kim, and F. Papadimitrakopoulos, J. Am. Chem. Soc. 124, 728 (2002).

    Article  Google Scholar 

  66. W. Sang-aroon, S. Saekow, and V. Amornkitbamrung, J. Photochem. Photobiol. A Chem. 236, 35 (2012).

    Article  Google Scholar 

  67. S.-L. Chen, L.-N. Yang, and Z.-S. Li, J. Power Sources 223, 86 (2013).

    Article  Google Scholar 

  68. J. Zhang, H.-B. Li, S.-L. Sun, Y. Geng, Y. Wu, and Z.-M. Su, J. Mater. Chem. 22, 568 (2012).

    Article  Google Scholar 

  69. Z.-L. Zhang, L.-Y. Zou, A.-M. Ren, Y.-F. Liu, J.-K. Feng, and C.-C. Sun, Dye Pigment. 96, 349 (2013).

    Article  Google Scholar 

  70. J.B. Asbury, Y.-Q. Wang, E. Hao, H.N. Ghosh, and T. Lian, Res. Chem. Intermed. 27, 393 (2001).

    Article  Google Scholar 

  71. J. Preat, D. Jacquemin, C. Michaux, and E.A. Perpète, Chem. Phys. 376, 56 (2010).

    Article  Google Scholar 

  72. R.G. Pearson, Inorg. Chem. 27, 734 (1988).

    Article  Google Scholar 

  73. M. Hachi, S. El Khattabi, A. Fitri, A.T. Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi, and M. Bouachrine, J. Mater. Environ. Sci. 9, 1200 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Slimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slimi, A., Fitri, A., Touimi Benjelloun, A. et al. Molecular Design of D-π-A-A Organic Dyes Based on Triphenylamine Derivatives with Various Auxiliary Acceptors for High Performance DSSCs. J. Electron. Mater. 48, 4452–4462 (2019). https://doi.org/10.1007/s11664-019-07228-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07228-0

Keywords

Navigation