Skip to main content
Log in

Self-Assembly of Hollow Bismuth Ferrite Spheres from Nitrate Solutions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Using the ultrasonic spray pyrolysis method, a controllable process is realized for self-assembly of spherical BiFeO3 aggregates. Powders are obtained, which exhibit as the pronounced ferromagnetic properties (the coercive force Hc at 8.8 kOe and the residual magnetization Mp at 0.08 emu/g) characteristic of conventionally sol–gel produced BiFeO3 samples (Hc and Mp approaching zero). Various manifestations of ferromagnetism are discussed. It is found that the ultimate values of magnetic characteristics are related to destruction of the antiferromagnetic cycloid as the shells of hollow BiFeO3 spheres are formed. The aggregates thus formed may be considered as an advanced type of bismuth ferrite nanostructure with no coverage in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Kadomtseva, A.K. Zvezdin, Yu.F. Popov, A.P. Pyatakov, and G.P. Vorobiev, JETP Lett. 79, 571 (2004). https://doi.org/10.1134/1.1787107.

    Article  Google Scholar 

  2. H. Bea and P. Paruch, Nature Mat. 8, 168 (2009). https://doi.org/10.1038/nmat2393.

    Article  Google Scholar 

  3. G. Catalan and J.F. Scott, Adv. Mater. 21, 2463 (2009). https://doi.org/10.1002/adma.200802849.

    Article  Google Scholar 

  4. L.W. Martin, Dalton Trans. 39, 10813 (2010). https://doi.org/10.1039/C0DT00576B.

    Article  Google Scholar 

  5. A.K. Zvezdin, A.S. Logginov, G.A. Meshkov, and A.P. Pyatakov, Bull. Russ. Acad. Sci: Phys. 71, 1561 (2007). https://doi.org/10.3103/S1062873807110263.

    Article  Google Scholar 

  6. Z. Dai, Y. Fujita, and Y. Akishige, Mater. Lett. 65, 2036 (2011). https://doi.org/10.1016/j.matlet.2011.04.029.

    Article  Google Scholar 

  7. J.R. Teague, R. Gerson, and W.J. James, Solid State Commun. 8, 1073 (1970). https://doi.org/10.1016/0038-1098(70)90262-0.

    Article  Google Scholar 

  8. P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, J. Phys. C: Solid State Phys. 13, 1931 (1980). https://doi.org/10.1088/0022-3719/13/10/012.

    Article  Google Scholar 

  9. A.P. Pyatakov and A.K. Zvezdin, Phys. Usp. 55, 557 (2012). https://doi.org/10.3367/UFNe.0182.201206b.0593.

    Article  Google Scholar 

  10. Q. Zhang, D. Sando, and V. Nagarajan, J. Mater. Chem. C 4, 4092 (2016). https://doi.org/10.1039/C6TC00243A.

    Article  Google Scholar 

  11. Y. Wang, Q.-H. Jiang, H.-C. He, and C.-W. Nan, Appl. Phys. Lett. 88, 142503 (2006). https://doi.org/10.1063/1.2191947.

    Article  Google Scholar 

  12. S.M. Selbach, T. Tybell, M.-A. Einarsrud, and T. Grande, Chem. Mater. 19, 6478 (2007). https://doi.org/10.1021/cm071827w.

    Article  Google Scholar 

  13. R. Mazumder, P.S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, and M. Raja, Appl. Phys. Lett. 91, 062510 (2007). https://doi.org/10.1063/1.2768201.

    Article  Google Scholar 

  14. H. Wu, J. Zhou, L. Liang, L. Li, and X. Zhu, J. Nanomat. (2014). https://doi.org/10.1155/2014/471485.

    Google Scholar 

  15. C.-H. Yang, D. Kan, I. Takeuchi, V. Nagarajand, and J. Seidel, Phys. Chem. Chem. Phys. 14, 15953 (2012). https://doi.org/10.1039/C2CP43082G.

    Article  Google Scholar 

  16. T.E. Quickel, L.T. Schelhas, R.A. Farrell, N. Petkov, V.H. Le, and S.H. Tolbert, Nat. Commun. 6, 6562 (2015). https://doi.org/10.1038/ncomms7562.

    Article  Google Scholar 

  17. Q. Zhang, N. Valanoor, and O. Standard, J. Mater. Chem. C 3, 582 (2015). https://doi.org/10.1039/C4TC02371D.

    Article  Google Scholar 

  18. A.V. Dmitriev, E.V. Vladimirova, M.V. Kandaurov, D.G. Kellerman, AYu Chufarov, and A.P. Tyutyunnik, J. Alloy Compds. 743, 654 (2018). https://doi.org/10.1016/j.jallcom.2018.02.035.

    Article  Google Scholar 

  19. S. Hoe, J.W. Ivey, M.A. Boraey, A. Shamsaddini-Shahrbabak, E. Javaheri, S. Matinkhoo, W.H. Finlay, and R. Vehring, Pharm. Res. 31, 449 (2014). https://doi.org/10.1007/s11095-013-1174-5.

    Article  Google Scholar 

  20. R. Vehring, Pharm. Res. 25, 999 (2008). https://doi.org/10.1007/s11095-007-9475-1.

    Article  Google Scholar 

  21. M. Mezhericher, A. Levy, and I. Borde, Chem. Eng. Sci. 66, 884 (2011). https://doi.org/10.1016/j.ces.2010.11.028.

    Article  Google Scholar 

  22. A.V. Dmitriev, E.V. Vladimirova, M.V. Kandaurov, A.Y. Chufarov, and D.G. Kellerman, FTT 59, 2360 (2017). https://doi.org/10.1134/S1063783417120125.

    Google Scholar 

  23. J.M. Moreau, C. Michel, R. Gerson, and W.J. James, J. Phys. Chem. Solids 32, 1315 (1971). https://doi.org/10.1016/S0022-3697(71)80189-0.

    Article  Google Scholar 

  24. I. Sosnowska, W. Schaefer, W.A. Kockelmann, and I.O. Troyanchuk, Mater. Sci. Forum 378, 616 (2001). https://doi.org/10.4028/www.scientific.net/MSF.378-381.616.

    Article  Google Scholar 

  25. C.J. Howard, J. Appl. Cryst. 15, 615 (1982). https://doi.org/10.1107/S0021889882012783.

    Article  Google Scholar 

  26. P. Thompson, D.E. Cox, and J.B. Hastings, J. Appl. Cryst 20, 79 (1987). https://doi.org/10.1107/S0021889887087090.

    Article  Google Scholar 

  27. G. Williamson and W.H. Hall, Acta Metall. 1, 22 (1957). https://doi.org/10.1016/0001-6160(53)90006-6.

    Article  Google Scholar 

  28. F. Kubel and H. Schmid, Acta Cryst. B46, 698 (1990). https://doi.org/10.1107/S0108768190006887.

    Article  Google Scholar 

  29. R.J. Lang, J. Acoust. Soc. Am. 34, 6 (1962). https://doi.org/10.1121/1.1918196.

    Article  Google Scholar 

  30. V.A. Khomchenko and J.A. Paixao, J. Appl. Phys. 116, 214105 (2014). https://doi.org/10.1063/1.4903315.

    Article  Google Scholar 

  31. A.M. Afzal, M. Umair, G. Dastgeer, M. Rizwan, M.Z. Yaqoob, R. Rashid, and H.S. Munir, J. Magnet. Magnet. Mater. 399, 77 (2016). https://doi.org/10.1016/j.jmmm.2015.09.062.

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Foundation for Basic Research (Grant # 17-08-00893). Special thanks for the support of this work from the government research program (theme No AAAA-A19-119031890025-9) for the Institute of Solid State Chemistry UB of RAS. The authors are grateful to Dr. Maria V. Lukashova (OOO “Tescan”, Saint Petersburg, Russia) for scanning microscopy and 3D FIB-SEM tomography.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Dmitriev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, A.V., Vladimirova, E.V., Kandaurov, M.V. et al. Self-Assembly of Hollow Bismuth Ferrite Spheres from Nitrate Solutions. J. Electron. Mater. 48, 4959–4969 (2019). https://doi.org/10.1007/s11664-019-07227-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07227-1

Keywords

Navigation