Skip to main content
Log in

Preparation of a Homogeneous Li3PO4 Coating and Its Effect on the Electrochemical Properties of LiNi0.8Co0.15Al0.05O2

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A uniform nanocoating can substantially enhance the electrochemical properties of cathode materials. Herein, we report that a uniform AlPO4 coating can be produced on the surface of LiNi0.8Co0.15Al0.05O2 (NCA) particles by a homogeneous precipitation method, which was confirmed by scanning electron microscopy and energy dispersive x-ray spectroscopy. After being heated, the AlPO4 was converted to the Li3PO4 which was verified by x-ray diffraction. The heated AlPO4 coated NCA demonstrated a substantially enhanced electrochemical performance. The capacity retention increased from 87.38% for bare NCA to 94.28% for the heated 1 wt.% AlPO4 coated NCA sample. Moreover, the reversible capacity at 5 C increased from 80 mAh/g for bare NCA to 120 mAh/g for the heated 1 wt.% AlPO4-coated NCA. In addition, improved thermal stability was also found. The start temperature of thermal runaway increased from 175.12°C for bare NCA to 200.32°C for the heated 1 wt.% AlPO4-coated NCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Choi and D. Aurbach, Nat. Rev. Mater. 1, 16013 (2016).

    Article  Google Scholar 

  2. J.B. Goodenough and Y. Kim, Chem. Mater. 22, 587 (2010).

    Article  Google Scholar 

  3. C.P. Grey and J.M. Tarascon, Nat. Mater. 16, 45 (2016).

    Article  Google Scholar 

  4. P.Y. Hou, L.Q. Zhang, and X.P. Gao, J. Mater. Chem. A 2, 17130 (2014).

    Article  Google Scholar 

  5. P.K. Nayak, E. Levi, J. Grinblat, M. Levi, B. Markovsky, N. Munichandraiah, Y.K. Sun, and D. Aurbach, Chemsuschem 9, 2404 (2016).

    Article  Google Scholar 

  6. N. Nitta, F. Wu, J.T. Lee, and G. Yushin, Mater. Today 18, 252 (2015).

    Article  Google Scholar 

  7. R. Robert, C. Villevieille, and P. Novák, J. Mater. Chem. A 2, 8589 (2014).

    Article  Google Scholar 

  8. J. Kim, H. Lee, H. Cha, M. Yoon, M. Park, and J. Cho, Adv. Energy Mater. 8, 1870023 (2018).

    Article  Google Scholar 

  9. S.-T. Myung, F. Maglia, K.-J. Park, C.S. Yoon, P. Lamp, S.-J. Kim, and Y.-K. Sun, ACS Energy Lett. 2, 196 (2016).

    Article  Google Scholar 

  10. Y. Xia, J. Zheng, C. Wang, and M. Gu, Nano Energy 49, 434 (2018).

    Article  Google Scholar 

  11. E. Cho, S.W. Seo, and K. Min, ACS Appl. Mater. Interfaces 9, 33257 (2017).

    Article  Google Scholar 

  12. P. Hou, H. Zhang, X. Deng, X. Xu, and L. Zhang, ACS Appl. Mater. Interfaces 9, 29643 (2017).

    Article  Google Scholar 

  13. E. Jo, S. Hwang, S.M. Kim, and W. Chang, Chem. Mater. 29, 2708 (2017).

    Article  Google Scholar 

  14. F. Schipper, E.M. Erickson, C. Erk, J.-Y. Shin, F.F. Chesneau, and D. Aurbach, J. Electrochem. Soc. 164, A6220 (2016).

    Article  Google Scholar 

  15. T. Chen, X. Li, H. Wang, X. Yan, L. Wang, B. Deng, W. Ge, and M. Qu, J. Power Sour. 374, 1 (2018).

    Article  Google Scholar 

  16. Y.-M. Chung, S.-H. Ryu, J.-H. Ju, Y.-R. Bak, M.-J. Hwang, K.-W. Kim, K.-K. Cho, and K.-S. Ryu, Bull. Korean Chem. Soc. 31, 2304 (2010).

    Article  Google Scholar 

  17. S. Yoon, K.-N. Jung, S.-H. Yeon, C.S. Jin, and K.-H. Shin, J. Electroanal. Chem. 683, 88 (2012).

    Article  Google Scholar 

  18. G. Dai, M. Yu, F. Shen, J. Cao, L. Ni, Y. Chen, Y. Tang, and Y. Chen, Ionics 22, 2021 (2016).

    Article  Google Scholar 

  19. B. Han, B. Key, S.H. Lapidus, J.C. Garcia, H. Iddir, J.T. Vaughey, and F. Dogan, ACS Appl. Mater. Interfaces 9, 41291 (2017).

    Article  Google Scholar 

  20. H.B. Kim, B.C. Park, S.T. Myung, K. Amine, J. Prakash, and Y.K. Sun, J. Power Sour 179, 347 (2008).

    Article  Google Scholar 

  21. R. Qi, J.-L. Shi, X.-D. Zhang, X.-X. Zeng, Y.-X. Yin, J. Xu, L. Chen, W.-G. Fu, Y.-G. Guo, and L.-J. Wan, Sci China Chem 60, 1230 (2017).

    Article  Google Scholar 

  22. G. Wu and Y. Zhou, J. Energy Chem. 28, 151 (2018).

    Article  Google Scholar 

  23. K. Min, S.W. Seo, B. Choi, K. Park, and E. Cho, ACS Appl. Mater. Interfaces 9, 17822 (2017).

    Article  Google Scholar 

  24. S. Chen, T. He, Y. Su, Y. Lu, L. Bao, L. Chen, Q. Zhang, J. Wang, R. Chen, and F. Wu, ACS Appl. Mater. Interfaces 9, 29732 (2017).

    Article  Google Scholar 

  25. J. Cho, Y.W. Kim, B. Kim, J.G. Lee, and B. Park, Angew. Chem. Int. Ed. Engl. 42, 1618 (2003).

    Article  Google Scholar 

  26. D. Chen, F. Zheng, L. Li, M. Chen, X. Zhong, W. Li, and L. Lu, J. Power Sour. 341, 147 (2017).

    Article  Google Scholar 

  27. Z.-F. Tang, R. Wu, P.-F. Huang, Q.-S. Wang, and C.-H. Chen, J. Alloys Compd. 693, 1157 (2017).

    Article  Google Scholar 

  28. P. Hou, H. Zhang, Z. Zi, L. Zhang, and X. Xu, J. Mater. Chem. A 5, 4254 (2017).

    Article  Google Scholar 

  29. F.L. Yang, W. Zhang, Z.X. Chi, F.Q. Cheng, J.T. Chen, A.M. Cao, and L.J. Wan, Chem. Commun. (Camb.) 51, 2943 (2015).

    Article  Google Scholar 

  30. H. Dong, S. Li, H. Liu, J. Mei, H. Liu, and G. Liu, Ionics 25, 827 (2019).

  31. Y. Zhou, Y. Wang, S. Li, J. Mei, H. Liu, H. Liu, and G. Liu, J. Alloys Compd. 695, 2951 (2017).

    Article  Google Scholar 

  32. A.T.M. Appapillai, A.N. Mansour, J. Cho, and Y. Shao-Horn, Chem. Mater. 19, 10 (2007).

    Article  Google Scholar 

  33. F. Wu, X. Zhang, T. Zhao, L. Li, M. Xie, and R. Chen, ACS Appl. Mater. Interfaces 7, 3773 (2015).

    Article  Google Scholar 

  34. Y. Wu, A.V. Murugan, and A. Manthiram, J. Electrochem. Soc. 155, A635 (2008).

    Article  Google Scholar 

  35. G.-R. Hu, X.-R. Deng, Z.-D. Peng, and K. Du, Electrochim. Acta 53, 2567 (2008).

    Article  Google Scholar 

  36. Z.W. Lebens-Higgins, S. Sallis, N.V. Faenza, F. Badway, N. Pereira, D.M. Halat, M. Wahila, C. Schlueter, T.-L. Lee, W. Yang, C.P. Grey, G.G. Amatucci, and L.F.J. Piper, Chem. Mater. 30, 958 (2018).

    Article  Google Scholar 

  37. L. Liang, X. Sun, C. Wu, L. Hou, J. Sun, X. Zhang, and C. Yuan, ACS Appl. Mater. Interfaces 10, 5498 (2018).

    Article  Google Scholar 

  38. Y.K. Hu, J.X. Ren, Q.L. Wei, X.D. Guo, Y. Tang, B.H. Zhong, and H. Liu, Acta Phys. Chim. Sin. 30, 75 (2014).

    Google Scholar 

  39. J. Cho, T.-G. Kim, C. Kim, J.-G. Lee, Y.-W. Kim, and B. Park, J. Power Sour. 146, 58 (2005).

    Article  Google Scholar 

  40. L. Li, Y. Cao, H. Zheng, and C. Feng, J. Mater. Sci. Mater. Electron. 28, 1925 (2016).

    Article  Google Scholar 

  41. X. Ma, C. Wang, X. Han, and J. Sun, J. Alloys Compd. 453, 352 (2008).

    Article  Google Scholar 

  42. Y. Zeng and J. He, J. Power Sour. 189, 519 (2009).

    Article  Google Scholar 

  43. Y. Chen, K. Xie, C. Zheng, Z. Ma, and Z. Chen, ACS Appl. Mater. Interfaces 6, 16888 (2014).

    Article  Google Scholar 

  44. B. Qiu, J. Wang, Y. Xia, Z. Wei, S. Han, and Z. Liu, ACS Appl. Mater. Interfaces 6, 9185 (2014).

    Article  Google Scholar 

  45. L. Xiong, Y. Xu, T. Tao, and J.B. Goodenough, J. Power Sour. 199, 214 (2012).

    Article  Google Scholar 

  46. J.M. Zheng, X.B. Wu, and Y. Yang, Electrochim. Acta 56, 3071 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

The research was financially supported by the Sichuan Provincial Key Technology R&D Program (2016GZ0299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Mei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, G., Li, S. et al. Preparation of a Homogeneous Li3PO4 Coating and Its Effect on the Electrochemical Properties of LiNi0.8Co0.15Al0.05O2. J. Electron. Mater. 48, 4443–4451 (2019). https://doi.org/10.1007/s11664-019-07223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07223-5

Keywords

Navigation