Skip to main content
Log in

Improvement of the Photo-Activity of CdS Thin Films Using TX-100

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

CdS thin films (CBD-CdS) and Triton X-100 (TX-100)-treated CdS thin films (TX100-CdS) were successfully deposited on fluorine-doped tin oxide (FTO) conducting substrates using the chemical bath deposition (CBD) method at bath temperatures of 40°C, 60°C and 80°C. The two types of films were characterized for their structural, optical, morphological and electrical properties. The introduction of TX-100 was found to effectively improve the structural, optical, morphological and electrical properties of the CdS thin films at all temperatures studied and thereby the photo-activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Moualkia, S. Hariech, and M.S. Aida, Thin Solid Films 518, 1259 (2009).

    Article  Google Scholar 

  2. W.G.C. Kumarage, L.B.D.R.P. Wijesundara, V.A. Seneviratne, C.P. Jayalath, and B.S. Dassanayake, Proc. Eng. 139, 64 (2016).

    Article  Google Scholar 

  3. H.H. Abu-Safe, M. Hossain, H. Naseem, W. Brown, and A. Al-Dhafiri, J. Electron. Mater. 33, 128 (2004).

    Article  Google Scholar 

  4. X. Yang, Y. Wang, Z. Wang, X. Lv, H. Jia, J. Kong, and M. Yu, Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.01.109.

    Google Scholar 

  5. S. Coria-Monroy, C. Sotelo-Lerma, and M. Martínez-Alonso, J. Electron. Mater. (2015). https://doi.org/10.1007/s11664-015-3906-2.

    Google Scholar 

  6. N.A. Abdul-Manaf, O.K. Echendu, F. Fauzi, L. Bowen, and I.M. Dharmadasa, J. Electron. Mater. (2014). https://doi.org/10.1007/s11664-014-3361-5.

    Google Scholar 

  7. N. Shahzad, S.M. Shah, S. Munir, A. Hana, U. Jabeen, E. Nosheen, B. Habib, A.U. Khan, Z. Hassan, M. Siddiq, and H. Hussain, J. Electron. Mater. (2015). https://doi.org/10.1007/s11664-015-3648-1.

    Google Scholar 

  8. S.R. Deo, A.K. Singh, and L. Deshmukh, J. Electron. Mater. (2015). https://doi.org/10.1007/s11664-015-3940-0.

    Google Scholar 

  9. H. Moualkia, S. Hariech, M.S. Aida, N. Attaf, and E.L. Laifa, J. Phys. D Appl. Phys. 42, 135404 (2009).

    Article  Google Scholar 

  10. K.D. Rogers, J.D. Painter, D.W. Lane, and M. Healy, J. Electron. Mater. 28, 112 (1999).

    Article  Google Scholar 

  11. Y. Wanga, X. Yanga, Q. Maa, J. Konga, H. Jiaa, Z. Wanga, and M. Yub, Appl. Surf. Sci. (2015). https://doi.org/10.1016/j.apsusc.2015.02.104.

    Google Scholar 

  12. A. Kathalingam, N. Ambika, M.R. Kim, J. Elanchezhiyan, Y.S. Chae, and J.K. Rhee, Mater. Sci. Pol. 28, 513 (2010).

    Google Scholar 

  13. T.P. Kumar and K. Sankaranarayanan, Can. J. Chem. Eng. 91, 27 (2013).

    Article  Google Scholar 

  14. S.J. Lade and C.D. Lokhande, Mater. Chem. Phys. 49, 160 (1997).

    Article  Google Scholar 

  15. C.L. Perkins and F.S. Hasoon, J. Vac. Sci. Technol. A Vac. Surf. Films 24, 3 (2006).

    Article  Google Scholar 

  16. J.A.M. Bolıvar, J. Aguiar, and C.C. Ruiz, J. Phys. Chem. 106, 870 (2002).

    Article  Google Scholar 

  17. K. Streletzky and G.D.J. Phillies, Langmuir 11, 42 (1996).

    Article  Google Scholar 

  18. A.V. Feitosa, M.A.R. Miranda, J.M. Sasaki, and M.A. Araújo-Silva, Braz. J. Phys. 34, 656 (2004).

    Article  Google Scholar 

  19. R.H. Wilson, Solid State Mater. Sci. 10, 1 (1980).

    Google Scholar 

  20. W.G.C. Kumarage, R.P. Wijesundera, V.A. Seneviratne, C.P. Jayalath, N. Kaur, E. Comini, and B.S. Dassanayake, J. Photochem. Photobiol. A 367, 171 (2018). https://doi.org/10.1016/j.jphotochem.2018.08.029.

    Article  Google Scholar 

  21. W.G.C. Kumarage, L.B.D.R.P. Wijesundara, V.A. Seneviratne, C.P. Jayalath, and B.S. Dassanayake, J. Phys. D Appl. Phys. 49, 095109 (2016).

    Article  Google Scholar 

  22. G. Hodes, Chemical Solution Deposition of Semiconductor Films (New York: Dekker, 2002), p. 1.

    Book  Google Scholar 

  23. R.O. Borges and D. Lincot, J. Electrochem. Soc. 140, 3464 (1993).

    Article  Google Scholar 

  24. H.H. Paradies, J. Phys. Chem. 84, 599 (1980).

    Article  Google Scholar 

  25. S.A. Vanalakar, S.S. Mali, E.A. Jo, J.Y. Kim, J.H. Kim, and P.S. Patil, Solid State Sci. 36, 41 (2014).

    Article  Google Scholar 

  26. R. Sathyamoorthy, P. Sudhagar, A. Balerna, C. Balasubramanian, S. Bellucci, A.I. Popov, and K. Asokan, J. Alloys Compd. 493, 240 (2010).

    Article  Google Scholar 

  27. S. Chavhan and R. Sharma, J. Phys. Chem. Solids 67, 767 (2006).

    Article  Google Scholar 

  28. P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, and B.S. Dassanayake, Mater. Res. Bull. (2017). https://doi.org/10.1016/j.materresbull.

    Google Scholar 

  29. Y. Wang, T. Jiang, D. Meng, J. Yang, Y. Li, Q. Ma, and J. Han, Surf. Sci. (2014). https://doi.org/10.1016/j.apsusc.2014.08.144.

    Google Scholar 

  30. S.M.H. Al-Jawad, J. Electron. Mater. (2017). https://doi.org/10.1007/s11664-017-5597-3.

    Google Scholar 

  31. W.G.C. Kumarage, L.B.D.R.P. Wijesundara, V.A. Seneviratne, C.P. Jayalath, T. Varga, M.I. Nandasiri, and B.S. Dassanayake, Mater. Chem. Phys. (2017). https://doi.org/10.1016/j.matchemphys.2017.07.052.

    Google Scholar 

  32. P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, and B.S. Dassanayake, Mater. Sci. Semicon. Proc. 58, 51 (2017).

    Article  Google Scholar 

  33. W.G.C. Kumarage, R.P. Wijesundera, V.A. Seneviratne, C.P. Jayalath, T. Varga, and B.S. Dassanayake, Appl. Phys. A 124, 494 (2018). https://doi.org/10.1007/s00339-018-1910-0.

    Article  Google Scholar 

  34. P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, and B.S. Dassanayake, J. Mater. Sci. Mater. Electron. 28, 276 (2017).

    Article  Google Scholar 

  35. B.N. Jagadale, J. Chem. Sci. 3, 7 (2013).

    Google Scholar 

  36. W.G.C. Kumarage, L.B.D.R.P. Wijesundara, V.A. Seneviratne, C.P. Jayalath, and B.S. Dassanayake, Semicond. Sci. Technol. 32, 045014 (2017). https://doi.org/10.1088/1361-6641/aa5ee3.

    Article  Google Scholar 

  37. K. Gelderman, L. Lee, and S.W. Donne, J. Chem. Educ. 84, 685 (2007).

    Article  Google Scholar 

  38. W.G.C. Kumarage, R.P. Wijesundera, N. Kaur, D. Zappa, V.A. Seneviratne, C.P. Jayalath, and B.S. Dassanayake, Int. J. Electroact. Mater. 7, 1 (2019).

    Google Scholar 

  39. K.L. Chopra and S.R. Das, Thin Film Solar Cells (Berlin: Springer, 1984), p. 464.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Dassanayake.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adikaram, K.K.M.B.B., Kumarage, W.G.C., Varga, T. et al. Improvement of the Photo-Activity of CdS Thin Films Using TX-100. J. Electron. Mater. 48, 4424–4431 (2019). https://doi.org/10.1007/s11664-019-07215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07215-5

Keywords

Navigation