Effect of Substrate Properties on Nanostructure and Optical Properties of CdTe Thin Films

  • Ebrahim HasaniEmail author
  • Monir Kamalian
  • Maryam Gholizadeh Arashti
  • Lida Babazadeh Habashi


Cadmium telluride (CdTe) nanoparticles were deposited on amorphous glass and crystal quartz as nonconductive films, indium tin oxide and fluorine doped tin oxide as transparent conducting films, and silver as a metal at 100°C under pressure of 2 × 10−5 mbar. CdTe thin films prepared by a thickness about 80 nm. The results of x-ray diffraction analysis show the grain size of preferential orientation was between 5.48 nm and 15.37 nm. Also, the preferential orientation changed from (111) for non-conducting substrates to (220) for conducting substrates. The investigation of texture coefficient (TC) has indicated the deviation of TC from unity for metals substrates is further than the other substrates. The optical properties of CdTe thin films such as the optical band gap, extinction coefficient and refractive index, real and imaginary parts of dielectric constant were investigated by ultraviolet–visible spectroscopy (UV–Vis) as a function of photon energy in the wavelength range of 600–1600 nm. These measurements indicated the increasing of optical band gap by increasing the conductivity of substrates. Scanning electron microscopy analysis used to investigate the morphology of thin films.


Cadmium telluride transparent conducting films texture coefficient optical band gap extinction coefficient residual stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank Dr. M. R. Karamad from Stanford University for his precious time to study and edit this manuscript.


  1. 1.
    B.E. McCandless and K.D. Dobson, Sol. Energy 77, 839–856 (2004).CrossRefGoogle Scholar
  2. 2.
    C.S. Ferekides, U. Balasubramanian, R. Mamazza, V. Viswanathan, H. Zhao, and D.L. Morel, Sol. Energy 77, 823–830 (2004).CrossRefGoogle Scholar
  3. 3.
    N. Al-Hosiny, S. Abdallah, A. Badawi, K. Easawi, and H. Talaat, Mater. Sci. Semicond. Process. 26, 238–243 (2014).CrossRefGoogle Scholar
  4. 4.
    A.M.D. Ede, E.J. Morton, and P. DeAntonis, Nucl. Instrum. Methods Phys. Res. 458, 7–11 (2001).CrossRefGoogle Scholar
  5. 5.
    R.W. Birkmire and B.E. McCandless, Curr. Opin. Solid State Mater. Sci. 14, 139–142 (2010).CrossRefGoogle Scholar
  6. 6.
    S. Chander and M.S. Dhaka, Physica E 73, 35–39 (2015).CrossRefGoogle Scholar
  7. 7.
    V.V. Brus, P.D. Maryanchuk, M.I. Ilashchuk, J. Rappich, I.S. Babichuk, and Z.D. Kovalyuk, Sol. Energy 112, 78–84 (2015).CrossRefGoogle Scholar
  8. 8.
    P. Bartolo-Pérez, R. Castro-Rodrίguez, F. Caballero-Briones, W. Cauich, J.L. Peña, and M.H. Farias, Surf. Coat. Technol. 155, 16–20 (2002).CrossRefGoogle Scholar
  9. 9.
    J. Ramiro, A. Perea, J.F. Trigo, Y. Laaziz, and E.G. Camarero, Thin Solid Films 361–362, 65–69 (2000).CrossRefGoogle Scholar
  10. 10.
    D. Verma, A. Ranga Rao, and V. Dutta, Sol. Energy Mater. Sol. Cells 93, 1482–1487 (2009).CrossRefGoogle Scholar
  11. 11.
    C.S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, and D.L. Morel, Thin Solid Films 361–362, 520–526 (2000).CrossRefGoogle Scholar
  12. 12.
    K.S. Rahman, F. Haque, N.A. Khan, M.A. Islam, M.M. Alam, Z.A. Alothman, K. Sopian, and N. Amin, Chalcogenide Lett. 11, 129–139 (2014).Google Scholar
  13. 13.
    M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, and A.W.H. Ho-Baillie, Prog. Photovoltaics Res. Appl. 25, 668–676 (2017).CrossRefGoogle Scholar
  14. 14.
    K. Durose, P.R. Edwards, and D.P. Halliday, J. Cryst. Growth 197, 733–742 (1999).CrossRefGoogle Scholar
  15. 15.
    J. Aranda, J.L. Morenza, J. Esteve, and J.M. Codina, Thin Solid Films 120, 23–30 (1984).CrossRefGoogle Scholar
  16. 16.
    J.P. Enrίquez and X. Mathew, J. Cryst. Growth 259, 215–222 (2003).CrossRefGoogle Scholar
  17. 17.
    X. Mathew, Sol. Energy Mater. Sol. Cells 76, 225–242 (2003).CrossRefGoogle Scholar
  18. 18.
    X. Mathew, J.P. Enriquez, C.G. Segura, A. Sanchez-Juarez, U. Pal, G.P. Contreras, D.R. Acosta, and C.R. Magana, Development of a substrate configuration CdTe/CdS solar cell on flexible molybdenum substrate, in Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference 2005, 434–436 (2005).Google Scholar
  19. 19.
    L. Alexander and H.P. Klug, J. Appl. Phys. 21, 137–142 (1950).CrossRefGoogle Scholar
  20. 20.
    G.K. Williamson and W.H. Hall, Acta Metall. 1, 22–31 (1953).CrossRefGoogle Scholar
  21. 21.
    K. Ravichandran, N. Nisha Banu, V. Senthamil Selvi, and P.V. Rajkumar, Mater. Res. Innov. 20, 187–192 (2016).CrossRefGoogle Scholar
  22. 22.
    E. Hasani and D. Raoufi, Surf. Eng. 34, 914–924 (2018).CrossRefGoogle Scholar
  23. 23.
    S. Chandramohan, R. Sathyamoorthy, S. Lalitha, and S. Senthilarasu, Sol. Energy Mater. Sol. Cells 90, 686–693 (2006).CrossRefGoogle Scholar
  24. 24.
    S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, and K. Natarajan, Sol. Energy Mater. Sol. Cells 82, 187–199 (2004).CrossRefGoogle Scholar
  25. 25.
    M.N.M. Daud, A. Zakaria, A. Jafari, M.S.M. Ghazali, W.R.W. Abdullah, and Z. Zainal, Int. J. Mol. Sci. 13, 5706 (2012).CrossRefGoogle Scholar
  26. 26.
    C. Ding, Z. Ming, B. Li, L. Feng, and J. Wu, Mater. Sci. Eng. B 178, 801–806 (2013).CrossRefGoogle Scholar
  27. 27.
    M. Boshta, E. Chikoidze, M.H. Sayed, C. Vilar, B. Berini, and Y. Dumont, J. Mater. Sci. 49, 7943–7948 (2014).CrossRefGoogle Scholar
  28. 28.
    M. Kim, B.-K. Min, C.-D. Kim, S. Lee, H.T. Kim, S.K. Jung, and S. Sohn, Curr. Appl. Phys. 10, S455–S458 (2010).CrossRefGoogle Scholar
  29. 29.
    S. Chander and M.S. Dhaka, J. Mater. Sci. Mater. Electron. 28, 6852–6859 (2017).CrossRefGoogle Scholar
  30. 30.
    David A. Porter, K.E. Eerling, and M.Y. Sherif, Phase Transformations in Metals and Alloys (USA: Taylor & Francis Group, 2009).Google Scholar
  31. 31.
    P.A. Beck and P.R. Sperry, J. Appl. Phys. 21, 150–152 (1950).CrossRefGoogle Scholar
  32. 32.
    G.S. Kumar, J.W. Vandersande, T. Klitsner, R.O. Pohl, and G.A. Slack, Phys. Rev. B 31, 2157–2162 (1985).CrossRefGoogle Scholar
  33. 33.
    M. Fahoume, O. Maghfoul, M. Aggour, B. Hartiti, F. Chraïbi, and A. Ennaoui, Sol. Energy Mater. Sol. Cells 90, 1437–1444 (2006).CrossRefGoogle Scholar
  34. 34.
    M.T. Dejpasand, M.H. Ehsani, and H. Rezagholipour Dizaji, Mater. Res. Innov. 22, 1–8 (2018).Google Scholar
  35. 35.
    M. Dongol, A. El-Denglawey, M.S. Abd El Sadek, and I.S. Yahia, Optik 126, 1352–1357 (2015).CrossRefGoogle Scholar
  36. 36.
    K.L. Chopra, Thin Film Phenomena (New York: McGraw-Hill, 1969).Google Scholar
  37. 37.
    J.-H. Lee, D.-G. Lim, and J.-S. Yi, Sol. Energy Mater. Sol. Cells 75, 235–242 (2003).CrossRefGoogle Scholar
  38. 38.
    H.R. Moutinho, F.S. Hasoon, F. Abulfotuh, and L.L. Kazmerski, J. Vac. Sci. Technol. A 13, 2877–2883 (1995).CrossRefGoogle Scholar
  39. 39.
    R.M. Lum, J.K. Klingert, R.B. Bylsma, A.M. Glass, A.T. Macrander, T.D. Harris, and M.G. Lamont, J. Appl. Phys. 64, 6727–6732 (1988).CrossRefGoogle Scholar
  40. 40.
    H.R. Moutinho, M.M. Al-Jassim, F.A. Abulfotuh, D.H. Levi, P.C. Dippo, R.G. Dhere, and L.L. Kazmerski, Studies of recrystallization of CdTe thin films after CdCl/sub 2/ treatment [solar cells], in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference—1997, 431–434 (1997).Google Scholar
  41. 41.
    P.S. Prevéy, X-ray Diffraction Residual Stress Techniques (Russell Township: American Society for Metals, 1986).Google Scholar
  42. 42.
    S. Sandeep and K. Dhananjaya, IOP Conf. Ser. Mater. Sci. Eng. 73, 012149 (2015).CrossRefGoogle Scholar
  43. 43.
    J. Tauc, Mater. Res. Bull. 3, 37–46 (1968).CrossRefGoogle Scholar
  44. 44.
    H. Ebrahim, R. Davood, Mater. Res. Express 5, 046413 (2018).Google Scholar
  45. 45.
    Y.S. Lo, R.K. Choubey, W.C. Yu, W.T. Hsu, and C.W. Lan, Thin Solid Films 520, 217–223 (2011).CrossRefGoogle Scholar
  46. 46.
    N. Lejmi and O. Savadogo, Sol. Energy Mater. Sol. Cells 70, 71–83 (2001).CrossRefGoogle Scholar
  47. 47.
    A.E. Rakhshani and A.S. Al-Azab, J. Phys. Condens. Matter. 12, 8745–8755 (2000).CrossRefGoogle Scholar
  48. 48.
    S. Chander and M.S. Dhaka, Thin Solid Films 638, 179–188 (2017).CrossRefGoogle Scholar
  49. 49.
    A.S. Elmezayyen, S. Guan, F.M. Reicha, I.M. El-Sherbiny, J. Zheng, and C. Xu, J. Phys. D Appl. Phys. 48, 175502 (2015).CrossRefGoogle Scholar
  50. 50.
    A. Bylica, P. Sagan, I. Virt, G. Wisz, M. Bester, I. Stefaniuk, and M. Kuzma, Thin Solid Films 511–512, 439–442 (2006).CrossRefGoogle Scholar
  51. 51.
    U.P. Khairnar, D.S. Bhavsar, R.U. Vaidya, and G.P. Bhavsar, Mater. Chem. Phys. 80, 421–427 (2003).CrossRefGoogle Scholar
  52. 52.
    E. Hasani, M.G. Arashti, L.B. Habashi, and M. Kamalian, Mater. Res. Express 6, 046422 (2019).CrossRefGoogle Scholar
  53. 53.
    A.A. Al-Ghamdi, S.A. Khan, S. Al-Heniti, F.A. Al-Agel, and M. Zulfequar, Curr. Appl. Phys. 11, 315–320 (2011).CrossRefGoogle Scholar
  54. 54.
    K. Punitha, R. Sivakumar, C. Sanjeeviraja, V. Sathe, and V. Ganesan, J. Appl. Phys. 116, 213502 (2014).CrossRefGoogle Scholar
  55. 55.
    L. Brus, IEEE J. Quantum Electron. 22, 1909–1914 (1986).CrossRefGoogle Scholar
  56. 56.
    Y. Wang, A. Suna, J. McHugh, E.F. Hilinski, P.A. Lucas, and R.D. Johnson, J. Chem. Phys. 92, 6927–6939 (1990).CrossRefGoogle Scholar
  57. 57.
    W.W. Yu, L. Qu, W. Guo, and P. Xiaogang, Chem. Mater. 15, (14) 2854–2860 (2003).CrossRefGoogle Scholar
  58. 58.
    S.A. Khan, F.S. Al-Hazmi, S. Al-Heniti, A.S. Faidah, and A.A. Al-Ghamdi, Curr. Appl. Phys. 10, 145–152 (2010).CrossRefGoogle Scholar
  59. 59.
    A.A. Al-Ghamdi, S.A. Khan, A. Nagat, and M.S. Abd El-Sadek, Opt. Laser Technol. 42, 1181–1186 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics, Yadegar-e-Imam Khomeini (RAH) Shahre Rey BranchIslamic Azad UniversityTehranIran

Personalised recommendations