Abstract
Cu2O/ZnO:Al (AZO) and Cu2O/ZnO/AZO heterojunctions have been deposited on glass substrates by a unique three-step pulsed laser deposition process. The structural, optical, and electrical properties of the oxide films were investigated before their implementation in the final device. X-ray diffraction analysis indicated that the materials were highly crystallized along the c-axis. All films were highly transparent in the visible region with enhanced electrical properties. Atomic force and scanning electron microscopies showed that the insertion of a ZnO layer between the Cu2O and AZO films in the heterojunction enhanced the average grain size and surface roughness. The heterojunctions exhibited remarkable diode behavior and good rectifying character with low leakage current under reverse bias. The presence of the ZnO interlayer film significantly reduced the parasitic and leakage currents across the barrier, improved the quality of the heterostructure, made the energy band between AZO and Cu2O layers smoother, and eliminated the possibility of interface recombination, leading to much longer electron lifetime.
This is a preview of subscription content, access via your institution.
References
D.S. Ginley, H. Hosono, and D.C. Paine, Handbook of Transparent Conductors (Berlin: Springer, 2010).
G. Torrisi, I. Crupi, S. Mirabella, and A. Terrasi, Sol. Energy Mater. Sol. Cells 165, 88 (2017).
M. Mosca, R. Macaluso, F. Caruso, V. Lo Muzzo, and C. Cali, Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications, ed. D. Persano Adorno and S. Pokutnyi (New York: Nova Science, 2015), pp. 245–282.
M. Nolan and S.D. Elliott, Phys. Chem. Chem. Phys. 8, 5350 (2006).
D.O. Scanlon and G.W. Watson, J. Phys. Chem. Lett. 1, 2582 (2010).
B. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. Klar, T. Sander, C. Reindl, J. Benz, and M. Eickhoff, Phys. Status Solidi B 249, 1487 (2012).
T.K.S. Wong, S. Zhuk, S. Masudy-Panah, and G.K. Dalapati, Materials 9, 271 (2016).
S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, Electrochim. Acta 53, 2226 (2008).
Y. Ievskaya, R.L.Z. Hoye, A. Sadhanala, K.P. Musselman, and J.L. MacManus-Driscoll, Sol. Energy Mater. Sol. Cells 135, 43 (2015).
H. Lahmar, F. Setifi, A. Azizi, G. Schmerber, and A. Dinia, J. Alloys Compd. 718, 36 (2017).
M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M.M. Mosaad, A. Waag, and A. Bakin, Sol. Energy Mater. Sol. Cells 145, 454 (2016).
M. Willander, O. Nur, Q. Zhao, L. Yang, M. Lorenz, B. Cao, J.Z. Pérez, C. Czekalla, G. Zimmermann, and M. Grundmann, Nanotechnology 20, 332001 (2009).
K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G.K. Paul, and T. Sakurai, Sol. Energy 80, 715 (2006).
J.B. Cui and U.J. Gibson, Phys. Chem. C 114, 6408 (2010).
K. Fujimoto, T. Oku, and T. Akiyama, Appl. Phys. Express 6, 086503 (2013).
T. Oku, T. Yamada, K. Fujimoto, and T. Akiyama, Coatings 4, 203 (2014).
M. Izaki, T. Shinagawa, K.-T. Mizuno, Y. Ida, M. Inaba, and A. Tasaka, J. Phys. D Appl. Phys. 40, 3326 (2007).
Y. Nishi, T. Miyata, and T. Minami, J. Vac. Sci. Technol. A 30, 04D103 (2012).
T. Minami, Y. Nishi, T. Miyata, and J. Nomoto, Appl. Phys. Express 4, 062301 (2011).
Y. Nishi, T. Miyata, and T. Minami, Thin Solid Films 528, 72 (2013).
Y.S. Lee, J. Heo, S.C. Siah, J.P. Mailoa, R.E. Brandt, S.B. Kim, R.G. Gordon, and T. Buonassisi, Energy Environ. Sci. 6, 2112 (2013).
H. Lahmar, A. Azizi, G. Schmerber, and A. Dinia, RSC Adv. 73, 68663 (2016).
S.H. Jeong, S.H. Song, K. Nagaich, S.A. Campbell, and E.S. Aydil, Thin Solid Films 519, 6613 (2011).
M. Barbouche, R.B. Zaghouani, N.E. Benammar, V. Aglieri, M. Mosca, R. Macaluso, K. Khirouni, and H. Ezzaouia, Superlattices Microstruct. 101, 512 (2017).
A. Sacco, M.S. Di Bella, M. Gerosa, A. Chiodoni, S. Bianco, M. Mosca, R. Macaluso, C. Calì, and C.F. Pirri, Thin Solid Films 574, 38 (2015).
M. Mosca, R. Macaluso, C. Calì, R. Butté, S. Nicolay, E. Feltin, D. Martin, and N. Grandjean, Thin Solid Films 539, 55 (2013).
R. Macaluso, M. Mosca, C. Calì, F. Di Franco, M. Santamaria, F. Di Quarto, and J.-L. Reverchon, J. Appl. Phys. 113, 164508 (2013).
R. Macaluso, M. Mosca, V. Costanza, A. D’angelo, G. Lullo, F. Caruso, C. Calì, F. Di Franco, M. Santamaria, and F. Di Quarto, Electron. Lett. 50, 262 (2014).
C. Calì, R. Macaluso, and M. Mosca, Spectrochim. Acta Part B 56, 743 (2001).
H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, and T. Minami, Appl. Surf. Sci. 244, 568 (2005).
Joint Committee on Powder Diffraction Standards, Powder Diffraction File No. 036-1451.
Y. Kayanuma, Phys. Rev. B Condens. Matter 38, 9797 (1988).
L. Feng, C. Zhang, G. Gao, and D. Cui, Nanoscale Res. Lett. 7, 276 (2012).
H. Kim, C.M. Gilmore, A. Pique, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafai, and D.B. Chrisey, J. Appl. Phys. 86, 6451 (1999).
H.S. Carranco, G.J. Diaz, M.G. Arellano, J.M. Juárez, G.R. Paredes, and R.P. Sierra, Proceedings of the 5th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2008) IEEE, 421 (2008).
Y.-K. Hsu, C.-H. Yu, Y.-C. Chen, and Y.-G. Lin, J. Power Sources 242, 541 (2013).
Z. Li, Y. Pi, D. Xu, Y. Li, W. Peng, G. Zhang, F. Zhang, and X. Fan, Appl. Catal. B 213, 1 (2017).
K. Samanta, P. Bhattacharya, and R.S. Katiyar, J. Appl. Phys. 108, 113501 (2010).
B.S. Mwankemwa, F.J. Nambala, F. Kyeyune, T.T. Hlatshwayo, J.M. Nel, and M. Diale, Mater. Sci. Semicond. Process. 71, 209 (2017).
J. Gubicza, Practical Applications of X-Ray Line Profile Analysis, in X-Ray Line Profile Analysis in Materials Science (IGI Global, 2014), 292.
S. Thamri, I. Sta, M. Jlassi, M. Hajji, and H. Ezzaouia, Mater. Sci. Semicond. Process. 71, 310 (2017).
V. Postica, I. Hölken, V. Schneider, V. Kaidas, O. Polonskyi, V. Cretu, I. Tiginyanu, F. Faupel, R. Adelung, and O. Lupan, Mater. Sci. Semicond. Process. 49, 20 (2016).
O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, Sol. Energy Mater. Sol. Cells 93, 1417 (2009).
M. Hoppe, N. Ababii, V. Postica, O. Lupan, O. Polonskyi, F. Schütt, S. Kaps, L.F. Sukhodub, V. Sontea, T. Strunskus, F. Faupel, and R. Adelung, Sens. Actuators B Part 2, 1362 (2018).
E. Muchuweni, T.S. Sathiaraj, and H. Nyakotyo, J. Alloys Compd. 721, 45 (2017).
S. Hussain, C. Cao, G. Nabi, W.S. Khan, Z. Usman, and T. Mahmood, Electrochim. Acta 56, 8342 (2011).
J. Tauc, Optical Properties of Solids (North Holland: Abeles, 1972).
N.H. Ke, P.T.K. Loan, D.A. Tuan, H.T. Dat, C.V. Tran, and L.V.T. Hung, J. Photochem. Photobiol. A 349, 100 (2017).
S. Inguva, E. Mc Glynn, and J.P. Mosnier, Thin Solid Films 621, 171 (2017).
M. Saad and A. Kassis, Sol. Energy Mater. Sol. Cells 79, 507 (2003).
W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S.H. Baeck, and E.W. McFarland, Sol. Energy Mater. Sol. Cells 77, 229 (2003).
H. Kobayashi, H. Mori, T. Ishida, and Y. Nakato, J. Appl. Phys. 77, 1301 (1995).
A.G. Milnes and D.L. Feucht, Heterojunctions and Metal-Semiconductor Junctions (New York: Academic, 1972).
W. Niu, M. Zhou, Z. Ye, and L. Zhu, Sol. Energy Mater. Sol. Cells 144, 717 (2016).
S. Chatterjee, S.K. Saha, and A.J. Pal, Sol. Energy Mater. Sol. Cells 147, 17 (2016).
Acknowledgments
The authors are grateful to Prof. M. Santamaria (Dipartimento di Ingegneria, Università degli Studi di Palermo) for the use of the XRD system and to CNR-IMM Catania (University) Unit for the use of the SEM.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Boughelout, A., Macaluso, R., Crupi, I. et al. Improved Cu2O/AZO Heterojunction by Inserting a Thin ZnO Interlayer Grown by Pulsed Laser Deposition. J. Electron. Mater. 48, 4381–4388 (2019). https://doi.org/10.1007/s11664-019-07195-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-019-07195-6
Keywords
- Heterojunctions
- ZnO
- Cu2O
- AZO
- pulsed laser deposition
- solar cells