Skip to main content

Improved Cu2O/AZO Heterojunction by Inserting a Thin ZnO Interlayer Grown by Pulsed Laser Deposition

Abstract

Cu2O/ZnO:Al (AZO) and Cu2O/ZnO/AZO heterojunctions have been deposited on glass substrates by a unique three-step pulsed laser deposition process. The structural, optical, and electrical properties of the oxide films were investigated before their implementation in the final device. X-ray diffraction analysis indicated that the materials were highly crystallized along the c-axis. All films were highly transparent in the visible region with enhanced electrical properties. Atomic force and scanning electron microscopies showed that the insertion of a ZnO layer between the Cu2O and AZO films in the heterojunction enhanced the average grain size and surface roughness. The heterojunctions exhibited remarkable diode behavior and good rectifying character with low leakage current under reverse bias. The presence of the ZnO interlayer film significantly reduced the parasitic and leakage currents across the barrier, improved the quality of the heterostructure, made the energy band between AZO and Cu2O layers smoother, and eliminated the possibility of interface recombination, leading to much longer electron lifetime.

This is a preview of subscription content, access via your institution.

References

  1. D.S. Ginley, H. Hosono, and D.C. Paine, Handbook of Transparent Conductors (Berlin: Springer, 2010).

    Google Scholar 

  2. G. Torrisi, I. Crupi, S. Mirabella, and A. Terrasi, Sol. Energy Mater. Sol. Cells 165, 88 (2017).

    Article  Google Scholar 

  3. M. Mosca, R. Macaluso, F. Caruso, V. Lo Muzzo, and C. Cali, Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications, ed. D. Persano Adorno and S. Pokutnyi (New York: Nova Science, 2015), pp. 245–282.

    Google Scholar 

  4. M. Nolan and S.D. Elliott, Phys. Chem. Chem. Phys. 8, 5350 (2006).

    Article  Google Scholar 

  5. D.O. Scanlon and G.W. Watson, J. Phys. Chem. Lett. 1, 2582 (2010).

    Article  Google Scholar 

  6. B. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. Klar, T. Sander, C. Reindl, J. Benz, and M. Eickhoff, Phys. Status Solidi B 249, 1487 (2012).

    Article  Google Scholar 

  7. T.K.S. Wong, S. Zhuk, S. Masudy-Panah, and G.K. Dalapati, Materials 9, 271 (2016).

    Article  Google Scholar 

  8. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, Electrochim. Acta 53, 2226 (2008).

    Article  Google Scholar 

  9. Y. Ievskaya, R.L.Z. Hoye, A. Sadhanala, K.P. Musselman, and J.L. MacManus-Driscoll, Sol. Energy Mater. Sol. Cells 135, 43 (2015).

    Article  Google Scholar 

  10. H. Lahmar, F. Setifi, A. Azizi, G. Schmerber, and A. Dinia, J. Alloys Compd. 718, 36 (2017).

    Article  Google Scholar 

  11. M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M.M. Mosaad, A. Waag, and A. Bakin, Sol. Energy Mater. Sol. Cells 145, 454 (2016).

    Article  Google Scholar 

  12. M. Willander, O. Nur, Q. Zhao, L. Yang, M. Lorenz, B. Cao, J.Z. Pérez, C. Czekalla, G. Zimmermann, and M. Grundmann, Nanotechnology 20, 332001 (2009).

    Article  Google Scholar 

  13. K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G.K. Paul, and T. Sakurai, Sol. Energy 80, 715 (2006).

    Article  Google Scholar 

  14. J.B. Cui and U.J. Gibson, Phys. Chem. C 114, 6408 (2010).

    Article  Google Scholar 

  15. K. Fujimoto, T. Oku, and T. Akiyama, Appl. Phys. Express 6, 086503 (2013).

    Article  Google Scholar 

  16. T. Oku, T. Yamada, K. Fujimoto, and T. Akiyama, Coatings 4, 203 (2014).

    Article  Google Scholar 

  17. M. Izaki, T. Shinagawa, K.-T. Mizuno, Y. Ida, M. Inaba, and A. Tasaka, J. Phys. D Appl. Phys. 40, 3326 (2007).

    Article  Google Scholar 

  18. Y. Nishi, T. Miyata, and T. Minami, J. Vac. Sci. Technol. A 30, 04D103 (2012).

    Article  Google Scholar 

  19. T. Minami, Y. Nishi, T. Miyata, and J. Nomoto, Appl. Phys. Express 4, 062301 (2011).

    Article  Google Scholar 

  20. Y. Nishi, T. Miyata, and T. Minami, Thin Solid Films 528, 72 (2013).

    Article  Google Scholar 

  21. Y.S. Lee, J. Heo, S.C. Siah, J.P. Mailoa, R.E. Brandt, S.B. Kim, R.G. Gordon, and T. Buonassisi, Energy Environ. Sci. 6, 2112 (2013).

    Article  Google Scholar 

  22. H. Lahmar, A. Azizi, G. Schmerber, and A. Dinia, RSC Adv. 73, 68663 (2016).

    Article  Google Scholar 

  23. S.H. Jeong, S.H. Song, K. Nagaich, S.A. Campbell, and E.S. Aydil, Thin Solid Films 519, 6613 (2011).

    Article  Google Scholar 

  24. M. Barbouche, R.B. Zaghouani, N.E. Benammar, V. Aglieri, M. Mosca, R. Macaluso, K. Khirouni, and H. Ezzaouia, Superlattices Microstruct. 101, 512 (2017).

    Article  Google Scholar 

  25. A. Sacco, M.S. Di Bella, M. Gerosa, A. Chiodoni, S. Bianco, M. Mosca, R. Macaluso, C. Calì, and C.F. Pirri, Thin Solid Films 574, 38 (2015).

    Article  Google Scholar 

  26. M. Mosca, R. Macaluso, C. Calì, R. Butté, S. Nicolay, E. Feltin, D. Martin, and N. Grandjean, Thin Solid Films 539, 55 (2013).

    Article  Google Scholar 

  27. R. Macaluso, M. Mosca, C. Calì, F. Di Franco, M. Santamaria, F. Di Quarto, and J.-L. Reverchon, J. Appl. Phys. 113, 164508 (2013).

    Article  Google Scholar 

  28. R. Macaluso, M. Mosca, V. Costanza, A. D’angelo, G. Lullo, F. Caruso, C. Calì, F. Di Franco, M. Santamaria, and F. Di Quarto, Electron. Lett. 50, 262 (2014).

    Article  Google Scholar 

  29. C. Calì, R. Macaluso, and M. Mosca, Spectrochim. Acta Part B 56, 743 (2001).

    Article  Google Scholar 

  30. H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, and T. Minami, Appl. Surf. Sci. 244, 568 (2005).

    Article  Google Scholar 

  31. Joint Committee on Powder Diffraction Standards, Powder Diffraction File No. 036-1451.

  32. Y. Kayanuma, Phys. Rev. B Condens. Matter 38, 9797 (1988).

    Article  Google Scholar 

  33. L. Feng, C. Zhang, G. Gao, and D. Cui, Nanoscale Res. Lett. 7, 276 (2012).

    Article  Google Scholar 

  34. H. Kim, C.M. Gilmore, A. Pique, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafai, and D.B. Chrisey, J. Appl. Phys. 86, 6451 (1999).

    Article  Google Scholar 

  35. H.S. Carranco, G.J. Diaz, M.G. Arellano, J.M. Juárez, G.R. Paredes, and R.P. Sierra, Proceedings of the 5th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2008) IEEE, 421 (2008).

  36. Y.-K. Hsu, C.-H. Yu, Y.-C. Chen, and Y.-G. Lin, J. Power Sources 242, 541 (2013).

    Article  Google Scholar 

  37. Z. Li, Y. Pi, D. Xu, Y. Li, W. Peng, G. Zhang, F. Zhang, and X. Fan, Appl. Catal. B 213, 1 (2017).

    Article  Google Scholar 

  38. K. Samanta, P. Bhattacharya, and R.S. Katiyar, J. Appl. Phys. 108, 113501 (2010).

    Article  Google Scholar 

  39. B.S. Mwankemwa, F.J. Nambala, F. Kyeyune, T.T. Hlatshwayo, J.M. Nel, and M. Diale, Mater. Sci. Semicond. Process. 71, 209 (2017).

    Article  Google Scholar 

  40. J. Gubicza, Practical Applications of X-Ray Line Profile Analysis, in X-Ray Line Profile Analysis in Materials Science (IGI Global, 2014), 292.

  41. S. Thamri, I. Sta, M. Jlassi, M. Hajji, and H. Ezzaouia, Mater. Sci. Semicond. Process. 71, 310 (2017).

    Article  Google Scholar 

  42. V. Postica, I. Hölken, V. Schneider, V. Kaidas, O. Polonskyi, V. Cretu, I. Tiginyanu, F. Faupel, R. Adelung, and O. Lupan, Mater. Sci. Semicond. Process. 49, 20 (2016).

    Article  Google Scholar 

  43. O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, Sol. Energy Mater. Sol. Cells 93, 1417 (2009).

    Article  Google Scholar 

  44. M. Hoppe, N. Ababii, V. Postica, O. Lupan, O. Polonskyi, F. Schütt, S. Kaps, L.F. Sukhodub, V. Sontea, T. Strunskus, F. Faupel, and R. Adelung, Sens. Actuators B Part 2, 1362 (2018).

    Article  Google Scholar 

  45. E. Muchuweni, T.S. Sathiaraj, and H. Nyakotyo, J. Alloys Compd. 721, 45 (2017).

    Article  Google Scholar 

  46. S. Hussain, C. Cao, G. Nabi, W.S. Khan, Z. Usman, and T. Mahmood, Electrochim. Acta 56, 8342 (2011).

    Article  Google Scholar 

  47. J. Tauc, Optical Properties of Solids (North Holland: Abeles, 1972).

    Google Scholar 

  48. N.H. Ke, P.T.K. Loan, D.A. Tuan, H.T. Dat, C.V. Tran, and L.V.T. Hung, J. Photochem. Photobiol. A 349, 100 (2017).

    Article  Google Scholar 

  49. S. Inguva, E. Mc Glynn, and J.P. Mosnier, Thin Solid Films 621, 171 (2017).

    Article  Google Scholar 

  50. M. Saad and A. Kassis, Sol. Energy Mater. Sol. Cells 79, 507 (2003).

    Article  Google Scholar 

  51. W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S.H. Baeck, and E.W. McFarland, Sol. Energy Mater. Sol. Cells 77, 229 (2003).

    Article  Google Scholar 

  52. H. Kobayashi, H. Mori, T. Ishida, and Y. Nakato, J. Appl. Phys. 77, 1301 (1995).

    Article  Google Scholar 

  53. A.G. Milnes and D.L. Feucht, Heterojunctions and Metal-Semiconductor Junctions (New York: Academic, 1972).

    Google Scholar 

  54. W. Niu, M. Zhou, Z. Ye, and L. Zhu, Sol. Energy Mater. Sol. Cells 144, 717 (2016).

    Article  Google Scholar 

  55. S. Chatterjee, S.K. Saha, and A.J. Pal, Sol. Energy Mater. Sol. Cells 147, 17 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. M. Santamaria (Dipartimento di Ingegneria, Università degli Studi di Palermo) for the use of the XRD system and to CNR-IMM Catania (University) Unit for the use of the SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Macaluso.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boughelout, A., Macaluso, R., Crupi, I. et al. Improved Cu2O/AZO Heterojunction by Inserting a Thin ZnO Interlayer Grown by Pulsed Laser Deposition. J. Electron. Mater. 48, 4381–4388 (2019). https://doi.org/10.1007/s11664-019-07195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07195-6

Keywords

  • Heterojunctions
  • ZnO
  • Cu2O
  • AZO
  • pulsed laser deposition
  • solar cells