Advertisement

Journal of Electronic Materials

, Volume 48, Issue 7, pp 4381–4388 | Cite as

Improved Cu2O/AZO Heterojunction by Inserting a Thin ZnO Interlayer Grown by Pulsed Laser Deposition

  • A. Boughelout
  • R. MacalusoEmail author
  • I. Crupi
  • B. Megna
  • M. S. Aida
  • M. Kechouane
Article
  • 27 Downloads

Abstract

Cu2O/ZnO:Al (AZO) and Cu2O/ZnO/AZO heterojunctions have been deposited on glass substrates by a unique three-step pulsed laser deposition process. The structural, optical, and electrical properties of the oxide films were investigated before their implementation in the final device. X-ray diffraction analysis indicated that the materials were highly crystallized along the c-axis. All films were highly transparent in the visible region with enhanced electrical properties. Atomic force and scanning electron microscopies showed that the insertion of a ZnO layer between the Cu2O and AZO films in the heterojunction enhanced the average grain size and surface roughness. The heterojunctions exhibited remarkable diode behavior and good rectifying character with low leakage current under reverse bias. The presence of the ZnO interlayer film significantly reduced the parasitic and leakage currents across the barrier, improved the quality of the heterostructure, made the energy band between AZO and Cu2O layers smoother, and eliminated the possibility of interface recombination, leading to much longer electron lifetime.

Keywords

Heterojunctions ZnO Cu2AZO pulsed laser deposition  solar cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to Prof. M. Santamaria (Dipartimento di Ingegneria, Università degli Studi di Palermo) for the use of the XRD system and to CNR-IMM Catania (University) Unit for the use of the SEM.

References

  1. 1.
    D.S. Ginley, H. Hosono, and D.C. Paine, Handbook of Transparent Conductors (Berlin: Springer, 2010).Google Scholar
  2. 2.
    G. Torrisi, I. Crupi, S. Mirabella, and A. Terrasi, Sol. Energy Mater. Sol. Cells 165, 88 (2017).CrossRefGoogle Scholar
  3. 3.
    M. Mosca, R. Macaluso, F. Caruso, V. Lo Muzzo, and C. Cali, Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications, ed. D. Persano Adorno and S. Pokutnyi (New York: Nova Science, 2015), pp. 245–282.Google Scholar
  4. 4.
    M. Nolan and S.D. Elliott, Phys. Chem. Chem. Phys. 8, 5350 (2006).CrossRefGoogle Scholar
  5. 5.
    D.O. Scanlon and G.W. Watson, J. Phys. Chem. Lett. 1, 2582 (2010).CrossRefGoogle Scholar
  6. 6.
    B. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. Klar, T. Sander, C. Reindl, J. Benz, and M. Eickhoff, Phys. Status Solidi B 249, 1487 (2012).CrossRefGoogle Scholar
  7. 7.
    T.K.S. Wong, S. Zhuk, S. Masudy-Panah, and G.K. Dalapati, Materials 9, 271 (2016).CrossRefGoogle Scholar
  8. 8.
    S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, Electrochim. Acta 53, 2226 (2008).CrossRefGoogle Scholar
  9. 9.
    Y. Ievskaya, R.L.Z. Hoye, A. Sadhanala, K.P. Musselman, and J.L. MacManus-Driscoll, Sol. Energy Mater. Sol. Cells 135, 43 (2015).CrossRefGoogle Scholar
  10. 10.
    H. Lahmar, F. Setifi, A. Azizi, G. Schmerber, and A. Dinia, J. Alloys Compd. 718, 36 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M.M. Mosaad, A. Waag, and A. Bakin, Sol. Energy Mater. Sol. Cells 145, 454 (2016).CrossRefGoogle Scholar
  12. 12.
    M. Willander, O. Nur, Q. Zhao, L. Yang, M. Lorenz, B. Cao, J.Z. Pérez, C. Czekalla, G. Zimmermann, and M. Grundmann, Nanotechnology 20, 332001 (2009).CrossRefGoogle Scholar
  13. 13.
    K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G.K. Paul, and T. Sakurai, Sol. Energy 80, 715 (2006).CrossRefGoogle Scholar
  14. 14.
    J.B. Cui and U.J. Gibson, Phys. Chem. C 114, 6408 (2010).CrossRefGoogle Scholar
  15. 15.
    K. Fujimoto, T. Oku, and T. Akiyama, Appl. Phys. Express 6, 086503 (2013).CrossRefGoogle Scholar
  16. 16.
    T. Oku, T. Yamada, K. Fujimoto, and T. Akiyama, Coatings 4, 203 (2014).CrossRefGoogle Scholar
  17. 17.
    M. Izaki, T. Shinagawa, K.-T. Mizuno, Y. Ida, M. Inaba, and A. Tasaka, J. Phys. D Appl. Phys. 40, 3326 (2007).CrossRefGoogle Scholar
  18. 18.
    Y. Nishi, T. Miyata, and T. Minami, J. Vac. Sci. Technol. A 30, 04D103 (2012).CrossRefGoogle Scholar
  19. 19.
    T. Minami, Y. Nishi, T. Miyata, and J. Nomoto, Appl. Phys. Express 4, 062301 (2011).CrossRefGoogle Scholar
  20. 20.
    Y. Nishi, T. Miyata, and T. Minami, Thin Solid Films 528, 72 (2013).CrossRefGoogle Scholar
  21. 21.
    Y.S. Lee, J. Heo, S.C. Siah, J.P. Mailoa, R.E. Brandt, S.B. Kim, R.G. Gordon, and T. Buonassisi, Energy Environ. Sci. 6, 2112 (2013).CrossRefGoogle Scholar
  22. 22.
    H. Lahmar, A. Azizi, G. Schmerber, and A. Dinia, RSC Adv. 73, 68663 (2016).CrossRefGoogle Scholar
  23. 23.
    S.H. Jeong, S.H. Song, K. Nagaich, S.A. Campbell, and E.S. Aydil, Thin Solid Films 519, 6613 (2011).CrossRefGoogle Scholar
  24. 24.
    M. Barbouche, R.B. Zaghouani, N.E. Benammar, V. Aglieri, M. Mosca, R. Macaluso, K. Khirouni, and H. Ezzaouia, Superlattices Microstruct. 101, 512 (2017).CrossRefGoogle Scholar
  25. 25.
    A. Sacco, M.S. Di Bella, M. Gerosa, A. Chiodoni, S. Bianco, M. Mosca, R. Macaluso, C. Calì, and C.F. Pirri, Thin Solid Films 574, 38 (2015).CrossRefGoogle Scholar
  26. 26.
    M. Mosca, R. Macaluso, C. Calì, R. Butté, S. Nicolay, E. Feltin, D. Martin, and N. Grandjean, Thin Solid Films 539, 55 (2013).CrossRefGoogle Scholar
  27. 27.
    R. Macaluso, M. Mosca, C. Calì, F. Di Franco, M. Santamaria, F. Di Quarto, and J.-L. Reverchon, J. Appl. Phys. 113, 164508 (2013).CrossRefGoogle Scholar
  28. 28.
    R. Macaluso, M. Mosca, V. Costanza, A. D’angelo, G. Lullo, F. Caruso, C. Calì, F. Di Franco, M. Santamaria, and F. Di Quarto, Electron. Lett. 50, 262 (2014).CrossRefGoogle Scholar
  29. 29.
    C. Calì, R. Macaluso, and M. Mosca, Spectrochim. Acta Part B 56, 743 (2001).CrossRefGoogle Scholar
  30. 30.
    H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, and T. Minami, Appl. Surf. Sci. 244, 568 (2005).CrossRefGoogle Scholar
  31. 31.
    Joint Committee on Powder Diffraction Standards, Powder Diffraction File No. 036-1451.Google Scholar
  32. 32.
    Y. Kayanuma, Phys. Rev. B Condens. Matter 38, 9797 (1988).CrossRefGoogle Scholar
  33. 33.
    L. Feng, C. Zhang, G. Gao, and D. Cui, Nanoscale Res. Lett. 7, 276 (2012).CrossRefGoogle Scholar
  34. 34.
    H. Kim, C.M. Gilmore, A. Pique, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafai, and D.B. Chrisey, J. Appl. Phys. 86, 6451 (1999).CrossRefGoogle Scholar
  35. 35.
    H.S. Carranco, G.J. Diaz, M.G. Arellano, J.M. Juárez, G.R. Paredes, and R.P. Sierra, Proceedings of the 5th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2008) IEEE, 421 (2008).Google Scholar
  36. 36.
    Y.-K. Hsu, C.-H. Yu, Y.-C. Chen, and Y.-G. Lin, J. Power Sources 242, 541 (2013).CrossRefGoogle Scholar
  37. 37.
    Z. Li, Y. Pi, D. Xu, Y. Li, W. Peng, G. Zhang, F. Zhang, and X. Fan, Appl. Catal. B 213, 1 (2017).CrossRefGoogle Scholar
  38. 38.
    K. Samanta, P. Bhattacharya, and R.S. Katiyar, J. Appl. Phys. 108, 113501 (2010).CrossRefGoogle Scholar
  39. 39.
    B.S. Mwankemwa, F.J. Nambala, F. Kyeyune, T.T. Hlatshwayo, J.M. Nel, and M. Diale, Mater. Sci. Semicond. Process. 71, 209 (2017).CrossRefGoogle Scholar
  40. 40.
    J. Gubicza, Practical Applications of X-Ray Line Profile Analysis, in X-Ray Line Profile Analysis in Materials Science (IGI Global, 2014), 292.Google Scholar
  41. 41.
    S. Thamri, I. Sta, M. Jlassi, M. Hajji, and H. Ezzaouia, Mater. Sci. Semicond. Process. 71, 310 (2017).CrossRefGoogle Scholar
  42. 42.
    V. Postica, I. Hölken, V. Schneider, V. Kaidas, O. Polonskyi, V. Cretu, I. Tiginyanu, F. Faupel, R. Adelung, and O. Lupan, Mater. Sci. Semicond. Process. 49, 20 (2016).CrossRefGoogle Scholar
  43. 43.
    O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean, Sol. Energy Mater. Sol. Cells 93, 1417 (2009).CrossRefGoogle Scholar
  44. 44.
    M. Hoppe, N. Ababii, V. Postica, O. Lupan, O. Polonskyi, F. Schütt, S. Kaps, L.F. Sukhodub, V. Sontea, T. Strunskus, F. Faupel, and R. Adelung, Sens. Actuators B Part 2, 1362 (2018).CrossRefGoogle Scholar
  45. 45.
    E. Muchuweni, T.S. Sathiaraj, and H. Nyakotyo, J. Alloys Compd. 721, 45 (2017).CrossRefGoogle Scholar
  46. 46.
    S. Hussain, C. Cao, G. Nabi, W.S. Khan, Z. Usman, and T. Mahmood, Electrochim. Acta 56, 8342 (2011).CrossRefGoogle Scholar
  47. 47.
    J. Tauc, Optical Properties of Solids (North Holland: Abeles, 1972).Google Scholar
  48. 48.
    N.H. Ke, P.T.K. Loan, D.A. Tuan, H.T. Dat, C.V. Tran, and L.V.T. Hung, J. Photochem. Photobiol. A 349, 100 (2017).CrossRefGoogle Scholar
  49. 49.
    S. Inguva, E. Mc Glynn, and J.P. Mosnier, Thin Solid Films 621, 171 (2017).CrossRefGoogle Scholar
  50. 50.
    M. Saad and A. Kassis, Sol. Energy Mater. Sol. Cells 79, 507 (2003).CrossRefGoogle Scholar
  51. 51.
    W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S.H. Baeck, and E.W. McFarland, Sol. Energy Mater. Sol. Cells 77, 229 (2003).CrossRefGoogle Scholar
  52. 52.
    H. Kobayashi, H. Mori, T. Ishida, and Y. Nakato, J. Appl. Phys. 77, 1301 (1995).CrossRefGoogle Scholar
  53. 53.
    A.G. Milnes and D.L. Feucht, Heterojunctions and Metal-Semiconductor Junctions (New York: Academic, 1972).Google Scholar
  54. 54.
    W. Niu, M. Zhou, Z. Ye, and L. Zhu, Sol. Energy Mater. Sol. Cells 144, 717 (2016).CrossRefGoogle Scholar
  55. 55.
    S. Chatterjee, S.K. Saha, and A.J. Pal, Sol. Energy Mater. Sol. Cells 147, 17 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Research Centre in Industrial Technologies CRTIAlgiersAlgeria
  2. 2.Department of Materials and Compounds, Faculty of PhysicsUSTHBAlgiersAlgeria
  3. 3.Thin Films Laboratory (TFL), Dipartimento di IngegneriaUniversità degli Studi di PalermoPalermoItaly
  4. 4.Laboratorio di Materiali per la Conservazione e il Restauro, Dipartimento di IngegneriaUniversità degli Studi di PalermoPalermoItaly
  5. 5.Department of Physics, Faculty of SciencesKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia

Personalised recommendations