Advertisement

Structural, Chemical and Electrical Properties of Au/La2O3/n-GaN MIS Junction with a High-k Lanthanum Oxide Insulating Layer

  • M. Uma
  • N. Balaram
  • P. R. Sekhar Reddy
  • V. Janardhanam
  • V. Rajagopal ReddyEmail author
  • Hyung-Joong Yun
  • Sung-Nam Lee
  • Chel-Jong Choi
Article
  • 18 Downloads

Abstract

This paper demonstrates the role of high-k La2O3 on the electrical performance of the Au/n-GaN Schottky junction (SJ) as an insulating layer between the Au and n-GaN films. First, the La2O3 is deposited on a n-type GaN surface by e-beam technique and analysed for its structural and chemical properties with x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) approaches. XRD and XPS results confirmed the growth of La2O3 on the n-GaN surface. Then, the Au/La2O3/n-GaN metal/insulator/semiconductor (MIS) junction is fabricated and analysed for its electrical properties and compared with the SJ electrical results. The MIS junction exhibits a good rectifying nature with a low leakage current compared to the SJ. Experimental findings reveal a higher barrier height obtained for the MIS junction than the SJ, suggesting that the barrier height is altered by the La2O3 insulating layer. Also, the barrier heights are estimated by Cheung’s, Norde functions and ΨSV plot, and the values are nearly matched with each other, indicating the techniques used here are valid. The extracted interface state density (NSS) of MIS junction is lower than the SJ, implying the La2O3 insulating layer plays a vital role in the decreased NSS. Experimental findings confirmed that the Schottky emission governs the reverse current in SJ. However, for the MIS junction, the Poole–Frenkel and Schottky emissions are the dominant current conduction mechanisms in the lower and higher bias regions.

Keywords

High-k lanthanum oxide n-type GaN structural and chemical properties MIS junction electrical properties carrier transport mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant (NRF-2017R1A2B2003365) funded by the Ministry of Education, Republic of Korea, and by the Transfer machine specialized lighting core technology development professional manpower training project (Project No. N0001363) funded by the Ministry of Trade, Industry and Energy, Republic of Korea.

References

  1. 1.
    M. Zheng, G. Zhang, X. Wang, J. Wan, H. Wu, and C. Liu, Nanoscale Res. Lett. 12, 267 (2017).CrossRefGoogle Scholar
  2. 2.
    W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, T. Ogura, and H. Ohashi, IEEE Trans. Electron Devices 50, 2528 (2003).CrossRefGoogle Scholar
  3. 3.
    T. Kachi, Jpn. J. Appl. Phys. 53, 100210 (2014).CrossRefGoogle Scholar
  4. 4.
    J.W. Chung, J.C. Roberts, E.L. Piner, and T. Palacios, IEEE Electron Device Lett. 29, 1196 (2008).CrossRefGoogle Scholar
  5. 5.
    S.W. Kang and S.W. Rhee, J. Electrochem. Soc. 149, C345 (2002).CrossRefGoogle Scholar
  6. 6.
    S.S. Ohmi, C. Kobayashi, I. Kashiwagi, C. Ohshima, H. Ishiwara, and H. Iwai, J. Electrochem. Soc. 150, F134 (2003).CrossRefGoogle Scholar
  7. 7.
    Y. Kim, S. Ohmi, K. Tsutsui, and H. Iwai, Jpn. J. Appl. Phys. 44, 4032 (2005).CrossRefGoogle Scholar
  8. 8.
    F.C. Chiu, H.W. Chou, and J.Y. Lee, J. Appl. Phys. 97, 103503 (2005).CrossRefGoogle Scholar
  9. 9.
    C.H. Hsu, M.T. Wang, and J.Y. Lee, J. Appl. Phys. 100, 074108 (2006).CrossRefGoogle Scholar
  10. 10.
    H.C. Chiu, C.W. Lin, C.H. Chen, C.W. Yang, C.K. Lin, J.S. Fu, L.B. Chang, R.M. Lin, and K.P. Hsueh, J. Electrochem. Soc. 157, H160 (2010).CrossRefGoogle Scholar
  11. 11.
    G. Chen, J. Yu, and P.T. Lai, Microelectron. Reliab. 52, 1660 (2012).CrossRefGoogle Scholar
  12. 12.
    F. Qian, L. Qian, X. Tao, W. Qiang, Z. Jin-Cheng, and H. Yue, Chin. Phys. B 21, 067305 (2012).CrossRefGoogle Scholar
  13. 13.
    J.S. Jur, V.D. Wheeler, D.J. Lichtenwalner, J.P. Maria, and M.A.L. Johnson, Appl. Phys. Lett. 98, 042902 (2011).CrossRefGoogle Scholar
  14. 14.
    P.C. Chen, C.H. Chen, C.M. Tsai, C.F. Cheng, and S.L. Wu, Surf. Coat. Technol. 231, 328 (2013).CrossRefGoogle Scholar
  15. 15.
    J. Chen, T. Kawanago, H. Wakabayashi, K. Tsutsui, H. Iwai, D. Nohata, H. Nohira, and K. Kakushima, Microelectron. Reliab. 60, 16 (2016).CrossRefGoogle Scholar
  16. 16.
    V. Manjunath, V. Rajagopal Reddy, P.R. Sekhar Reddy, V. Janardhanam, and C.J. Choi, Curr. Appl. Phys. 17, 980 (2017).CrossRefGoogle Scholar
  17. 17.
    C. Venkata Prasad, V. Rajagopal Reddy, and C.J. Choi, Appl. Phys. A 123, 279 (2017).CrossRefGoogle Scholar
  18. 18.
    C. Venkata Prasad, M. Siva Pratap Reddy, V. Rajagopal Reddy, and C. Park, Appl. Surf. Sci. 427, 670 (2018).CrossRefGoogle Scholar
  19. 19.
    Q. Wang, X. Cheng, L. Zheng, P. Ye, M. Li, L. Shen, J. Li, D. Zhang, Z. Gu, and Y. Yu, Appl. Surf. Sci. 410, 326 (2017).CrossRefGoogle Scholar
  20. 20.
    Q. Wang, X. Cheng, L. Zheng, L. Shen, D. Zhang, Z. Gu, R. Qian, D. Cao, and Y. Yu, Appl. Surf. Sci. 428, 1 (2018).CrossRefGoogle Scholar
  21. 21.
    T. Honma, Y. Benino, T. Fujiwara, T. Komatsu, R. Sato, and V. Dimitrov, J. Appl. Phys. 91, 2942 (2002).CrossRefGoogle Scholar
  22. 22.
    C. Yang, H. Fan, S. Qiu, Y. Xi, and Y. Fu, J. Non-Cryst. Solids 355, 33 (2009).CrossRefGoogle Scholar
  23. 23.
    Y. Li, B. Guan, A. Maclennan, Y. Hu, D. Li, J. Zhao, Y. Wang, and H. Zhang, Electrochim. Acta 241, 395 (2017).CrossRefGoogle Scholar
  24. 24.
    E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Oxford: Clarendon, 1988).Google Scholar
  25. 25.
    V. Rajagopal Reddy, V. Janardhanam, J. Won, and C.J. Choi, J. Colloid Interface Sci. 499, 180 (2017).CrossRefGoogle Scholar
  26. 26.
    S.M. Sze and K.K. Ng, Physics of Semiconductors Devices, 3rd ed. (New Jersey: Wiley, 2007).Google Scholar
  27. 27.
    M. Das, J. Datta, R. Jana, S. Sil, S. Halder, and P.P. Ray, New J. Chem. 41, 5476 (2017).CrossRefGoogle Scholar
  28. 28.
    S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).CrossRefGoogle Scholar
  29. 29.
    P. Prabhu Thapaswini, R. Padma, N. Balaram, B. Bindu, and V. Rajagopal Reddy, Superlatt. Microstruct. 93, 82 (2016).CrossRefGoogle Scholar
  30. 30.
    S. Karatas, S. Altindal, A. Turut, and M. Cakar, Phys. B 392, 43 (2007).CrossRefGoogle Scholar
  31. 31.
    V. Rajagopal Reddy, P.R. Sekhar Reddy, I. Neelakanta Reddy, and C.J. Choi, RSC Adv. 6, 105761 (2016).CrossRefGoogle Scholar
  32. 32.
    H. Norde, J. Appl. Phys. 50, 5052 (1979).CrossRefGoogle Scholar
  33. 33.
    P. Chattopadhyay, Solid State Electron. 38, 739 (1995).CrossRefGoogle Scholar
  34. 34.
    V. Rajagopal Reddy, D. Sri Silpa, V. Janardhanam, H.J. Yun, and C.J. Choi, Electron. Mater. Lett. 11, 73 (2015).CrossRefGoogle Scholar
  35. 35.
    S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 1981).Google Scholar
  36. 36.
    B. Deb, A. Ganguly, S. Chaudhuri, B.R. Chakraborti, and A.K. Pal, Mater. Chem. Phys. 74, 282 (2002).CrossRefGoogle Scholar
  37. 37.
    M. Diale and F.D. Auret, Phys. B 404, 4415 (2009).CrossRefGoogle Scholar
  38. 38.
    R. Khelifi, H. Mazari, S. Mansouri, Z. Benamara, M. Mostefaoui, K. Ameur, N. Benseddik, P. Marie, P. Ruterana, I. Monnet, J.M. Bluet, and C. Bru-Chevallier, Sens. Transd. 27, 217 (2014).Google Scholar
  39. 39.
    V. Rajagopal Reddy and C. Venkata Prasad, Mater. Sci. Eng. B 231, 74 (2018).CrossRefGoogle Scholar
  40. 40.
    H.C. Card and E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971).CrossRefGoogle Scholar
  41. 41.
    J. Lin, S. Banerjee, J. Lee, and C. Teng, IEEE Electron Device Lett. 11, 191 (1990).CrossRefGoogle Scholar
  42. 42.
    V. Rajagopal Reddy, V. Janardhanam, J.W. Ju, H. Hong, and C.J. Choi, Semicond. Sci. Technol. 29, 075001 (2014).CrossRefGoogle Scholar
  43. 43.
    A.C. Varghes and C.S. Menon, Eur. Phys. J. B 47, 485 (2005).CrossRefGoogle Scholar
  44. 44.
    V. Rajagopal Reddy, Appl. Phys. A 116, 1379 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • M. Uma
    • 1
  • N. Balaram
    • 1
  • P. R. Sekhar Reddy
    • 2
  • V. Janardhanam
    • 2
  • V. Rajagopal Reddy
    • 1
    Email author
  • Hyung-Joong Yun
    • 3
  • Sung-Nam Lee
    • 4
  • Chel-Jong Choi
    • 2
  1. 1.Department of PhysicsSri Venkateswara UniversityTirupatiIndia
  2. 2.School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC)Chonbuk National UniversityJeonjuRepublic of Korea
  3. 3.Advanced Nano Surface Research GroupKorea Basic Science InstituteDaejeonRepublic of Korea
  4. 4.Department of Nano-Optical EngineeringKorea Polytechnic UniversitySiheungRepublic of Korea

Personalised recommendations