Skip to main content
Log in

Ab Initio Study of Mono-Layer Graphene as an Electronical or Optical Sensor for Detecting B, N, O and F Atoms

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Using a first-principles calculation, the electronic and optical properties of graphene with B, N, O and F atom adsorption was studied. For the adatoms studied, distortion of the graphene layer is significant and causes a change in hybridization from sp2 to sp3. Also, it was found that B atom adsorption on graphene is n-type, F and O atoms adsorption on graphene are p-type semiconductor, while N adsorption has a metal behavior. N-absorbed graphene shows a magnetic moment, while B-, O-, and F-absorbed graphene show no magnetic moment. The optical absorption spectra of monolayer graphene have been calculated for the cases of in-plane (Ec), out of plane (E||c) and 45° polarization of light to the plane of the graphene layer and have been compared with atom adsorption on graphene. For (Ec), it was observed that the graphene was an optical sensor for finding F gas. In (E||c), it is an optical sensor for detecting the B atom in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S. Morzov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  2. W. Han, R.K. Kawakami, M. Gmitra, and J. Fabian, Nat. Nanotechnol. 9, 794 (2014).

    Article  Google Scholar 

  3. A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D.T.F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).

    Article  Google Scholar 

  4. G. Allaedini, E. Mahmoudi, P. Aminayi, S. Masrinda Tasrini, and A.W. Mohammad, Synth. Met. 220, 72 (2016).

    Article  Google Scholar 

  5. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Rouff, Nature 442, 282 (2006).

    Article  Google Scholar 

  6. F. Schedin, A.K. Geim, S.V. Moeozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nat. Mater. 6, 652 (2007).

    Article  Google Scholar 

  7. I.I. Barbolina, K.S. Novoselov, S.V. Morozov, S.V. Dubonos, M. Missous, A.O. Volkov, D.A. Chiristian, I.V. Grigorieva, and A.K. Geim, Appl. Phys. Lett. 88, 013901 (2006).

    Article  Google Scholar 

  8. C.A. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, and D. Zho, Adv. Mater. 20, 3289 (2008).

    Article  Google Scholar 

  9. Y. Lu, B.R. Goldsmith, N.J. Kubert, and A.T.C. Johnson, Appl. Phys. Lett. 97, 083107 (2010).

    Article  Google Scholar 

  10. Z.M. Ao, J. Yang, S. Li, and Q. Jiang, Chem. Phys. Lett. 461, 276 (2008).

    Article  Google Scholar 

  11. M. Khantha, N.A. Cordero, L.M. Molina, J.A. Alonso, and L.A. Girifalco, Phys. Rev. B 70, 125422 (2004).

    Article  Google Scholar 

  12. D.M. Duffy and J.A. Blackman, Phys. Rev. B 58, 7443 (1998).

    Article  Google Scholar 

  13. Y. Yagi, T.M. Briere, H.F. Marcel Sluiter, V. Kumar, A.A. Farajian, and Y. Kawazoe, Phys. Rev. B 69, 075414 (2004).

    Article  Google Scholar 

  14. D.M. Duffy and J.A. Blackman, Surf. Sci. 415, L1016 (1998).

    Article  Google Scholar 

  15. E.J. Dopluck, M. Scheffler, and P. Lindan, J. Phys. Rev. Lett. 92, 22 (2004).

    Google Scholar 

  16. Y.H. Zhang, L.F. Han, Y.H. Xiao, D.Z. Jia, Z.H. Guo, and F. Li, Comput. Mater. Sci. 69, 222 (2013).

    Article  Google Scholar 

  17. P.O. Lehtinen, A.S. Foster, A. Auela, A. Krasheninnikov, K. Nordlund, and R.M. Nieminen, Phys. Rev. Lett. 91, 017202 (2003).

    Article  Google Scholar 

  18. O.V. Sedelnikova, L.G. Bulusheva, and A.V. Okotrub, J. Chem. Phys. 134, 244707 (2011).

    Article  Google Scholar 

  19. A.G. Marinopoulos, L. Reining, A. Rubio, and V. Olevano, Phy. Rev. B 69, 245419 (2004).

    Article  Google Scholar 

  20. A.G. Marinopoulos, L. Wirtz, A. Marini, V. Olevano, A. Rubio, and L. Reining, Appl. Phys. A 78, 1157 (2004).

    Article  Google Scholar 

  21. P. Rani, G.S. Dubey, and V.K. Jindal, Physica E 62, 28 (2014).

    Article  Google Scholar 

  22. T. Eberlein, U. Bangert, R.R. Nair, R. Jones, M. Gass, A.L. Bleloch, K.S. Novoselov, A. Geim, and P.R. Briddon, Phys. Rev. B 77, 233406 (2008).

    Article  Google Scholar 

  23. M.S. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys. Condens. Matter 14, 2717 (2002).

    Article  Google Scholar 

  24. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    Article  Google Scholar 

  25. W. Kohn and L.J. Shem, Phys. Rev. A 140, 1133 (1965).

    Article  Google Scholar 

  26. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. L 77, 3865 (1996).

    Article  Google Scholar 

  27. R. Chang, Physical Chemistry for the Biosciences (Sausalito: University Science Books, cop, 2005), pp. 450–455.

    Google Scholar 

  28. P.A. Webb, Introduction to Chemical Adsorption Analytical Techniques and Their Applications to Catalysis (San Diego: MIC Technical Publications, 2003), pp. 1–12.

    Google Scholar 

  29. M. Kralik, Chem. Pap. 68, 1625 (2014).

    Google Scholar 

  30. R. Satio, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (London: Imperial College, 1998).

    Google Scholar 

  31. J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  32. S. Agnoli and M. Favarob, J. Mater. Chem. A 4, 5002 (2016).

    Article  Google Scholar 

  33. M. Wu, C. Cao, and J.Z. Jiang, Nanotechnology 21, 505202 (2010).

    Article  Google Scholar 

  34. L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, and C.N.R. Rao, Condens. Matter Phys. 21, 4726 (2009).

    Google Scholar 

  35. L. Chen, Y. Ouyang, H. Pan, Y. Sun, and D. Li, J. Magn. Magn. Mater. 323, 547 (2011).

    Article  Google Scholar 

  36. L. Feng, Simulation of Crystal, Electronic and Magnetic Structures and gas Adsorption of Two Dimensional Materials (Wollongong: University of Wollongong, Thesis Collections, 2014).

    Google Scholar 

  37. S.S. Zumdahl, Chemical Principles, 5th ed. (Boston: Houghton Mifflin Company, 2005), p. 587.

    Google Scholar 

  38. K. Nakada and A. Ishii, in Graphene Simulation, ed. J.R. Gong (Croatia: InTech, 2011), p. 3

  39. R.I. Masel and R.I. Masel, Principles of Adsorption and Reaction on Solid Surfaces (New York: Wiley, 1996), pp. 202–203.

    Google Scholar 

  40. S. Cecie, Biology: Concepts and Applications (Cole: Thomson Brooks, 2005), pp. 160–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Parhizgar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudarzi, M., Parhizgar, S.S. & Beheshtian, J. Ab Initio Study of Mono-Layer Graphene as an Electronical or Optical Sensor for Detecting B, N, O and F Atoms. J. Electron. Mater. 48, 4265–4272 (2019). https://doi.org/10.1007/s11664-019-07191-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07191-w

Keywords

Navigation