Skip to main content
Log in

Approach to Defect-Free Lifetime and High Electron Density in CdTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript


Achieving simultaneously high carrier density and lifetime is important for II–VI semiconductor-based applications such as photovoltaics and infrared detectors; however, it is a challenging task. In this work, high purity CdTe single crystals doped with indium (In) were grown by vertical Bridgman melt growth under carefully controlled stoichiometry. Two-photon excitation time-resolved photoluminescence was employed to measure bulk recombination lifetime by eliminating surface recombination effects. By adjusting stoichiometry with post growth annealing, high-net free carrier density approaching 1018 cm−3 was achieved simultaneously with lifetime approaching the radiative limit by suppressing non-radiative recombination centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. M.O. Reese, A. Kanevce, T.M. Barnes, S.A. Jensen, and W.K. Metzger, J. Appl. Phys. 121, 214506 (2017).

    Article  Google Scholar 

  2. S.-H. Wei and S.B. Zhang, Phys. Rev. B. 66, 155211 (2002).

    Article  Google Scholar 

  3. W. Stadler, D.M. Hofmann, H.C. Alt, T. Muschik, B.K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K.W. Benz, Phys. Rev. B. 51, 10619 (1995).

    Article  Google Scholar 

  4. S. Seto, K. Suzuki, V.N. Abastillas Jr., and K. Inabe, J. Cryst. Growth 214, 974 (2000).

    Article  Google Scholar 

  5. N. Krsmanovic, K.G. Lynn, M.H. Weber, R. Tjossem, Th. Gessmann, Cs. Szeles, E.E. Eissler, J.P. Flint, and H.L. Glass, Phys. Rev. B. 62, 16279 (2000).

    Article  Google Scholar 

  6. B. Segall, M.R. Lorenz, and R.E. Halsted, Phys. Rev. 129, 2471 (1963).

    Article  Google Scholar 

  7. M. Becerril, O. Zelaya-Angel, R. Ramĺrez-Bon, F.J. Espinoza-Beltrán, and K. González-Hernández, Appl. Phys. Lett. 70, 452 (1997).

    Article  Google Scholar 

  8. O.S. Ogedengbe, C.H. Swartz, P.A.R.D. Jayathilaka, J.E. Petersen, S. Sohal, E.G. LeBlanc, M. Edirisooriya, K.N. Zaunbrecher, A. Wang, T.M. Barnes, and T.H. Myers, J. Electron. Mater. 46, 5424 (2017).

    Article  Google Scholar 

  9. J. Ma, D. Kuciauskas, D. Albin, R. Bhattacharya, M. Reese, T. Barnes, J.V. Li, T. Gessert, and S.-H. Wei, Phys. Rev. Lett. 111, 067402 (2013).

    Article  Google Scholar 

  10. J.-H. Yang, W.K. Metzger, and S.-H. Wei, Appl. Phys. Lett. 111, 042106 (2017).

    Article  Google Scholar 

  11. S. Farrell, T. Barnes, W.K. Metzger, J.H. Park, R. Kodama, and S. Sivananthan, J. Electron. Mater. 44, 3202 (2015).

    Article  Google Scholar 

  12. M.O. Reese, C.L. Perkins, J.M. Burst, S. Farrell, T.M. Barnes, S.W. Johnston, D. Kuciauskas, T.A. Gessert, and W.K. Metzger, J. Appl. Phys. 118, 155305 (2015).

    Article  Google Scholar 

  13. M.O. Reese, J.M. Burst, C.L. Perkins, A. Kanevce, S.W. Johnston, D. Kuciauskas, T.M. Barnes, and W.K. Metzger, IEEE J. Photovolt. 5, 382 (2015).

    Article  Google Scholar 

  14. D. Kuciauskas, A. Kanevce, J.M. Burst, J.N. Duenow, R. Dhere, D.S. Albin, D.H. Levi, and R.K. Ahrenkiel, IEEE J. Photovolt. 3, 1319 (2013).

    Article  Google Scholar 

  15. D.M. Hofmann, P. Omling, H.G. Grimmeiss, B.K. Meyer, K.W. Benz, and D. Sinerius, Phys. Rev. B. 45, 6247 (1992).

    Article  Google Scholar 

  16. J.-H. Yang, L. Shi, L.-W. Wang, and S.-H. Wei, Sci. Rep. 6, 21712 (2016).

    Article  Google Scholar 

  17. R. Soundararajan, K.G. Lynn, S. Awadallah, C. Szeles, and S.-H. Wei, J. Electron. Mater. 35, 1333 (2006).

    Article  Google Scholar 

  18. M. Fiederle, C. Eiche, M. Salk, R. Schwarz, K.W. Benz, W. Stadler, D.M. Hofmann, and B.K. Meyer, J. Appl. Phys. 84, 6689 (1998).

    Article  Google Scholar 

  19. P. Rudolph, A. Engel, I. Schentke, and A. Grochocki, J. Cryst. Growth 147, 297 (1995).

    Article  Google Scholar 

  20. J.H. Greenberg, V.N. Guskov, V.B. Lazarev, and O.V. Shebershneva, J. Solid State Chem. 102, 382 (1993).

    Article  Google Scholar 

  21. G. Yang, A.E. Bolotnikov, Y. Cui, G.S. Camarda, A. Hossain, and R.B. James, J. Cryst. Growth 311, 99 (2008).

    Article  Google Scholar 

  22. J.M. Burst, J.N. Duenow, D.S. Albin, E. Colegrove, M.O. Reese, J.A. Aguiar, C.S. Jiang, M.K. Patel, M.M. Al-Jassim, D. Kuciauskas, S. Swain, T. Ablekim, K.G. Lynn, and W.K. Metzger, Nat. Energy 1, 16015 (2016).

    Article  Google Scholar 

  23. R. Cohen, V. Lyahovitskaya, E. Poles, A. Liu, and Y. Rosenwaks, Appl. Phys. Lett. 73, 1400 (1998).

    Article  Google Scholar 

  24. C.H. Swartz, M. Edirisooriya, E.G. LeBlanc, O.C. Noriega, P.A.R.D. Jayathilaka, O.S. Ogedengbe, B.L. Hancock, M. Holtz, T.H. Myers, and K.N. Zaunbrecher, Appl. Phys. Lett. 105, 222107 (2014).

    Article  Google Scholar 

  25. G. Benz and R. Conradt, Phys. Rev. B. 16, 843 (1977).

    Article  Google Scholar 

  26. R.K. Ahrenkiel and S.W. Johnston, Sol. Energy Mater. Sol. Cells 93, 645 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. K. Swain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, S.K., Duenow, J.N., Johnston, S.W. et al. Approach to Defect-Free Lifetime and High Electron Density in CdTe. J. Electron. Mater. 48, 4235–4239 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: