Metal–Organic Frameworks as Electro-Catalysts for Oxygen Reduction Reaction in Electrochemical Technologies

  • Samaneh Sohrabi
  • Masoumeh GhalkhaniEmail author


Fuel cells and metal-air batteries have been comprehensively investigated in recent years because of their high energy capacity, good efficiency and environmental friendly nature. Slow kinetics of oxygen reduction reaction (ORR), one of the main processes in fuel cells and metal-air batteries, is improved with platinum catalysts that confine the prevalent utilization of such electrochemical devices with increasing worth for them. However, platinum catalysts after long time usage exhibit weak operations due to the crossover effect and agglomeration. Metal–organic frameworks (MOFs), the porous crystalline materials, consisting of metal centers coordinated to organic ligands, are appropriate catalysts due to their superior properties such as high surface area and carbon content, tunable pore size and diverse metal nodes. In this review, we summarize the recent progress in synthesis and design of MOF-derived ORR electrocatalysts in acidic and alkaline fuel cells. Our focus is on the different methods developed for improving the activity and stability of MOF based ORR electrocatalysts.

Graphical Abstract


Oxygen reduction reaction metal–organic framework electrocatalyst fuel cells sacrificial MOFs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Financial support by the Alzahra University is gratefully acknowledged.


  1. 1.
    D.J. Tranchemontagne, J.R. Hunt, and O.M. Yaghi, Tetrahedron 64, 8553 (2008).CrossRefGoogle Scholar
  2. 2.
    P. Horcajada, S. Surblé, C. Serre, D.-Y. Hong, Y.-K. Seo, J.-S. Chang, J.-M. Greneche, I. Margiolaki, and G. Férey, Chem. Commun. 27, 2820 (2007).CrossRefGoogle Scholar
  3. 3.
    W. Morris, B. Volosskiy, S. Demir, F. Gándara, P.L. McGrier, H. Furukawa, D. Cascio, J.F. Stoddart, and O.M. Yaghi, Inorg. Chem. 51, 6443 (2012).CrossRefGoogle Scholar
  4. 4.
    T.G. Glover, G.W. Peterson, B.J. Schindler, D. Britt, and O. Yaghi, Chem. Eng. Sci. 66, 163 (2011).CrossRefGoogle Scholar
  5. 5.
    S. Aguado, J. Canivet, and D. Farrusseng, J. Mater. Chem. 21, 7582 (2011).CrossRefGoogle Scholar
  6. 6.
    A. Aijaz, N. Fujiwara, and Q. Xu, J. Am. Chem. Soc. 136, 6790 (2014).CrossRefGoogle Scholar
  7. 7.
    D. Umeyama, S. Horike, M. Inukai, and S. Kitagawa, J. Am. Chem. Soc. 135, 11345 (2013).CrossRefGoogle Scholar
  8. 8.
    M. Sadakiyo, T. Yamada, and H. Kitagawa, J. Am. Chem. Soc. 131, 9906 (2009).CrossRefGoogle Scholar
  9. 9.
    P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, and C. Kreuz, Nat. Mater. 9, 172 (2010).CrossRefGoogle Scholar
  10. 10.
    J.-H. Wang, M. Li, and D. Li, Chem. Sci. 4, 1793 (2013).CrossRefGoogle Scholar
  11. 11.
    A. Dhakshinamoorthy, M. Alvaro, H. Chevreau, P. Horcajada, T. Devic, C. Serre, and H. Garcia, Catal. Sci. Technol. 2, 324 (2012).CrossRefGoogle Scholar
  12. 12.
    A. Fateeva, P.A. Chater, C.P. Ireland, A.A. Tahir, Y.Z. Khimyak, P.V. Wiper, J.R. Darwent, and M.J. Rosseinsky, Angew. Chem. 124, 7558 (2012).CrossRefGoogle Scholar
  13. 13.
    V.M. Suresh, S.J. George, and T.K. Maji, Adv. Funct. Mater. 23, 5585 (2013).CrossRefGoogle Scholar
  14. 14.
    K.G.M. Laurier, F. Vermoortele, R. Ameloot, D.E. De Vos, J. Hofkens, and M.B.J. Roeffaers, J. Am. Chem. Soc. 135, 14488 (2013).CrossRefGoogle Scholar
  15. 15.
    C.-W. Kung, Y.-S. Li, M.-H. Lee, S.-Y. Wang, W.-H. Chiang, and K.-C. Ho, J. Mater. Chem. A 4, 10673 (2016).CrossRefGoogle Scholar
  16. 16.
    H.V. Le, Q.T.T. Nguyen, P.K.T. Nguyen, and H.T. Nguyen, J. Electron. Mater. 47, 6918 (2018).CrossRefGoogle Scholar
  17. 17.
    F. Gándara and T.D. Bennett, IUCrJ 1, 563 (2014).CrossRefGoogle Scholar
  18. 18.
    C.-W. Kung, T.-H. Chang, L.-Y. Chou, J.T. Hupp, O.K. Farha, and K.-C. Ho, Chem. Commun. 51, 2414 (2015).CrossRefGoogle Scholar
  19. 19.
    M. Klimakow, P. Klobes, A.F. Thünemann, K. Rademann, and F. Emmerling, Chem. Mater. 22, 5216 (2010).CrossRefGoogle Scholar
  20. 20.
    J. Kim, S.-T. Yang, S.B. Choi, J. Sim, J. Kim, and W.-S. Ahn, J. Mater. Chem. 21, 3070 (2011).CrossRefGoogle Scholar
  21. 21.
    M.J. Katz, Z.J. Brown, Y.J. Colón, P.W. Siu, K.A. Scheidt, R.Q. Snurr, J.T. Hupp, and O.K. Farha, Chem. Commun. 49, 9449 (2013).CrossRefGoogle Scholar
  22. 22.
    A. Martinez Joaristi, J. Juan-Alcañiz, P. Serra-Crespo, F. Kapteijn, and J. Gascon, Cryst. Growth Des. 12, 3489 (2012).CrossRefGoogle Scholar
  23. 23.
    N. Stock and S. Biswas, Chem. Rev. 112, 933 (2011).CrossRefGoogle Scholar
  24. 24.
    N. Sahiner, S. Demirci, and M. Yildiz, J. Electron. Mater. 46, 790 (2017).CrossRefGoogle Scholar
  25. 25.
    J.-C. Wang, F.-W. Ding, J.-P. Ma, Q.-K. Liu, J.-Y. Cheng, and Y.-B. Dong, Inorg. Chem. 54, 10865 (2015).CrossRefGoogle Scholar
  26. 26.
    C. Wang, Z. Xie, K.E. de Krafft, and W. Lin, J. Am. Chem. Soc. 133, 13445 (2011).CrossRefGoogle Scholar
  27. 27.
    H. Wang, F. Yin, G. Li, B. Chen, and Z. Wang, Int. J. Hydrogen Energy 39, 16179 (2014).CrossRefGoogle Scholar
  28. 28.
    K. Xi, S. Cao, X. Peng, C. Ducati, R.V. Kumar, and A.K. Cheetham, Chem. Commun. 49, 2192 (2013).CrossRefGoogle Scholar
  29. 29.
    G. Xu, B. Ding, L. Shen, P. Nie, J. Han, and X. Zhang, J. Mater. Chem. A 1, 4490 (2013).CrossRefGoogle Scholar
  30. 30.
    F. Zheng, Y. Yang, and Q. Chen, Nat. Commun. 5, 5261 (2014).CrossRefGoogle Scholar
  31. 31.
    B. Liu, H. Shioyama, T. Akita, and Q. Xu, J. Am. Chem. Soc. 130, 5390 (2008).CrossRefGoogle Scholar
  32. 32.
    P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun, and D. Cao, Energy Environ. Sci. 7, 442 (2014).CrossRefGoogle Scholar
  33. 33.
    X. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng, and X. Li, J. Mater. Chem. A 2, 14064 (2014).CrossRefGoogle Scholar
  34. 34.
    L. Ge, Y. Yang, L. Wang, W. Zhou, R. De Marco, Z. Chen, J. Zou, and Z. Zhu, Carbon 82, 417 (2015).CrossRefGoogle Scholar
  35. 35.
    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, and H. Jonsson, J. Phys. Chem. B 108, 17886 (2004).CrossRefGoogle Scholar
  36. 36.
    O. Oloniyo, S. Kumar, and K. Scott, J. Electron. Mater. 41, 921 (2012).CrossRefGoogle Scholar
  37. 37.
    J. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, and R.R. Adzic, Angew. Chem. 117, 2170 (2005).CrossRefGoogle Scholar
  38. 38.
    A. Morozan, B. Jousselme, and S. Palacin, Energy Environ. Sci. 4, 1238 (2011).CrossRefGoogle Scholar
  39. 39.
    R.A. Mirzaie, A.A. Firooz, and N.M. Khori, J. Electron. Mater. 47, 6995 (2018).CrossRefGoogle Scholar
  40. 40.
    Y. Devrim and A. Albostan, J. Electron. Mater. 45, 3900 (2016).CrossRefGoogle Scholar
  41. 41.
    H. Sun, J. Chem. Technol. Biotechnol. 87, 1167 (2012).CrossRefGoogle Scholar
  42. 42.
    L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, and R.S. Ruoff, Energy Environ. Sci. 5, 7936 (2012).CrossRefGoogle Scholar
  43. 43.
    D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, and J. Nakamura, Science 351, 361 (2016).CrossRefGoogle Scholar
  44. 44.
    J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen, and L. Dai, Angew. Chem. Int. Ed. 55, 2230 (2016).CrossRefGoogle Scholar
  45. 45.
    Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai, Nat. Mater. 10, 780 (2011).CrossRefGoogle Scholar
  46. 46.
    H. Dong, H. Yu, X. Wang, Q. Zhou, and J. Sun, J. Chem. Technol. Biotechnol. 88, 774 (2013).CrossRefGoogle Scholar
  47. 47.
    L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, Angew. Chem. Int. Ed. 53, 7860 (2014).CrossRefGoogle Scholar
  48. 48.
    H. Tang, H. Yin, J. Wang, N. Yang, D. Wang, and Z. Tang, Angew. Chem. 125, 5695 (2013).CrossRefGoogle Scholar
  49. 49.
    A. Serov, K. Artyushkova, and P. Atanassov, Adv. Energy Mater. 4, 1301735 (2014).CrossRefGoogle Scholar
  50. 50.
    R. Jasinski, Nature 201, 1212 (1964).CrossRefGoogle Scholar
  51. 51.
    F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, and P. Zelenay, Energy Environ. Sci. 4, 114 (2010).CrossRefGoogle Scholar
  52. 52.
    U. Tylus, Q. Jia, K. Strickland, N. Ramaswamy, A. Serov, P. Atanassov, and S. Mukerjee, J. Phys. Chem. C 118, 8999 (2014).CrossRefGoogle Scholar
  53. 53.
    C. Gumeci, N. Leonard, Y. Liu, S. McKinney, B. Halevi, and S.C. Barton, J. Mater. Chem. A 3, 21494 (2015).CrossRefGoogle Scholar
  54. 54.
    S. Ganesan, N. Leonard, and S.C. Barton, Phys. Chem. Chem. Phys. 16, 4576 (2014).CrossRefGoogle Scholar
  55. 55.
    R. Kothandaraman, V. Nallathambi, K. Artyushkova, and S.C. Barton, Appl. Catal. B Environ. 92, 209 (2009).CrossRefGoogle Scholar
  56. 56.
    E.F. Holby and P. Zelenay, Nano Energy 29, 54 (2016).CrossRefGoogle Scholar
  57. 57.
    X. Li, Y. Fang, X. Lin, M. Tian, X. An, Y. Fu, R. Li, J. Jin, and J. Ma, J. Mater. Chem. A 3, 17392 (2015).CrossRefGoogle Scholar
  58. 58.
    S. Dou, X. Li, L. Tao, J. Huo, and S. Wang, Chem. Commun. 52, 9727 (2016).CrossRefGoogle Scholar
  59. 59.
    Y. Qian, Z. Hu, X. Ge, S. Yang, Y. Peng, Z. Kang, Z. Liu, J.Y. Lee, and D. Zhao, Carbon 111, 641 (2017).CrossRefGoogle Scholar
  60. 60.
    I.A. Khan, Y. Qian, A. Badshah, M.A. Nadeem, and D. Zhao, ACS Appl. Mater. Interfaces 8, 17268 (2016).CrossRefGoogle Scholar
  61. 61.
    Q. Zhu, W. Xia, T. Akita, R. Zou, and Q. Xu, Adv. Mater. 28, 6391 (2016).CrossRefGoogle Scholar
  62. 62.
    M. Wu, K. Wang, M. Yi, Y. Tong, Y. Wang, and S. Song, ACS Catal. 7, 6082 (2017).CrossRefGoogle Scholar
  63. 63.
    Z. Hu, Z. Zhang, Z. Li, M. Dou, and F. Wang, ACS Appl. Mater. Interfaces 9, 16109 (2017).CrossRefGoogle Scholar
  64. 64.
    Z. Meng, S. Cai, R. Wang, H. Tang, S. Song, and P. Tsiakaras, Appl. Catal. B Environ. 244, 120 (2019).CrossRefGoogle Scholar
  65. 65.
    Z. Zhang, S. Liu, X. Li, T. Qin, L. Wang, X. Bo, Y. Liu, L. Xu, S. Wang, and X. Sun, ACS Appl. Mater. Interfaces 10, 22023 (2018).CrossRefGoogle Scholar
  66. 66.
    Q. Li, P. Xu, W. Gao, S. Ma, G. Zhang, R. Cao, J. Cho, H. Wang, and G. Wu, Adv. Mater. 26, 1378 (2014).CrossRefGoogle Scholar
  67. 67.
    A. Kong, Q. Lin, C. Mao, X. Bu, and P. Feng, Chem. Commun. 50, 15619 (2014).CrossRefGoogle Scholar
  68. 68.
    A. Kong, C. Mao, Q. Lin, X. Wei, X. Bu, and P. Feng, Dalton Trans. 44, 6748 (2015).CrossRefGoogle Scholar
  69. 69.
    Y. Liu, H. Jiang, J. Hao, Y. Liu, H. Shen, W. Li, and J. Li, ACS Appl. Mater. Interfaces 9, 31841 (2017).CrossRefGoogle Scholar
  70. 70.
    M. Jahan, Z. Liu, and K.P. Loh, Adv. Funct. Mater. 23, 5363 (2013).CrossRefGoogle Scholar
  71. 71.
    M. Jahan, Q. Bao, and K.P. Loh, J. Am. Chem. Soc. 134, 6707 (2012).CrossRefGoogle Scholar
  72. 72.
    S.J. Garibay and S.M. Cohen, Chem. Commun. 46, 7700 (2010).CrossRefGoogle Scholar
  73. 73.
    M. Kandiah, M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E.A. Quadrelli, F. Bonino, and K.P. Lillerud, Chem. Mater. 22, 6632 (2010).CrossRefGoogle Scholar
  74. 74.
    D. Feng, Z. Gu, J. Li, H. Jiang, Z. Wei, and H. Zhou, Angew. Chem. 124, 10453 (2012).CrossRefGoogle Scholar
  75. 75.
    D. Feng, W.C. Chung, Z. Wei, Z.Y. Gu, H.L. Jiang, Y.P. Chen, D.J. Darensbourg, and H.C. Zhou, J. Am. Chem. Soc. 135, 17105 (2013).CrossRefGoogle Scholar
  76. 76.
    P.M. Usov, B. Huffman, C.C. Epley, M.C. Kessinger, J. Zhu, W.A. Maza, and A.J. Morris, ACS Appl. Mater. Interfaces 9, 33539 (2017).CrossRefGoogle Scholar
  77. 77.
    S. Sohrabi, S. Dehghanpour, and M. Ghalkhani, ChemCatChem 8, 2356 (2016).CrossRefGoogle Scholar
  78. 78.
    J. Mao, L. Yang, P. Yu, X. Wei, and L. Mao, Electrochem. Commun. 19, 29 (2012).CrossRefGoogle Scholar
  79. 79.
    M. Jiang, L. Li, D. Zhu, X. Zhao, H. Zhang, and X. Zhao, J. Mater. Chem. A 2, 5323 (2014).CrossRefGoogle Scholar
  80. 80.
    S. Sohrabi, S. Dehghanpour, and M. Ghalkhani, J. Mater. Sci. 53, 3624 (2018).CrossRefGoogle Scholar
  81. 81.
    B. Volosskiy, H. Fei, Z. Zhao, S. Lee, M. Li, Z. Lin, B. Papandrea, C. Wang, Y. Huang, and X. Duan, ACS Appl. Mater. Interfaces 8, 26769 (2016).CrossRefGoogle Scholar
  82. 82.
    Q. Mo, N. Chen, M. Deng, L. Yang, and Q. Gao, ACS Appl. Mater. Interfaces 9, 37721 (2017).CrossRefGoogle Scholar
  83. 83.
    W. Xia, J. Zhu, W. Guo, L. An, D. Xia, and R. Zou, J. Mater. Chem. A 2, 11606 (2014).CrossRefGoogle Scholar
  84. 84.
    S. Zhao, H. Yin, L. Du, L. He, K. Zhao, L. Chang, G. Yin, H. Zhao, S. Liu, and Z. Tang, ACS Nano 8, 12660 (2014).CrossRefGoogle Scholar
  85. 85.
    S. Ma, G.A. Goenaga, A.V. Call, and D. Liu, Chem. Eur. J. 17, 2063 (2011).CrossRefGoogle Scholar
  86. 86.
    B.Y. Xia, Y. Yan, N. Li, H. Bin Wu, X.W.D. Lou, and X. Wang, Nat. Energy 1, 15006 (2016).CrossRefGoogle Scholar
  87. 87.
    S. You, X. Gong, W. Wang, D. Qi, X. Wang, X. Chen, and N. Ren, Adv. Energy Mater. 6, 1501497 (2016).CrossRefGoogle Scholar
  88. 88.
    T.Y. Ma, S. Dai, M. Jaroniec, and S.Z. Qiao, J. Am. Chem. Soc. 136, 13925 (2014).CrossRefGoogle Scholar
  89. 89.
    B. Chen, G. Ma, Y. Zhu, and Y. Xia, Sci. Rep. 7, 5266 (2017).CrossRefGoogle Scholar
  90. 90.
    G. Zhang, C. Li, J. Liu, L. Zhou, R. Liu, X. Han, H. Huang, H. Hu, Y. Liu, and Z. Kang, J. Mater. Chem. A 2, 8184 (2014).CrossRefGoogle Scholar
  91. 91.
    L. Huang, X. Zhang, Y. Han, Q. Wang, Y. Fang, and S. Dong, J. Mater. Chem. A 5, 18610 (2017).CrossRefGoogle Scholar
  92. 92.
    X. Hua, J. Luo, C. Shen, and S. Chen, Catal. Sci. Technol. 8, 1945 (2018).CrossRefGoogle Scholar
  93. 93.
    S. Fu, C. Zhu, Y. Zhou, G. Yang, J.-W. Jeon, J. Lemmon, D. Du, S.K. Nune, and Y. Lin, Electrochim. Acta 178, 287 (2015).CrossRefGoogle Scholar
  94. 94.
    S. Pandiaraj, H.B. Aiyappa, R. Banerjee, and S. Kurungot, Chem. Commun. 50, 3363 (2014).CrossRefGoogle Scholar
  95. 95.
    Y. Zhao, X. Liu, K.X. Yao, L. Zhao, and Y. Han, Chem. Mater. 24, 4725 (2012).CrossRefGoogle Scholar
  96. 96.
    Y. Chen, C. Wang, Z. Wu, Y. Xiong, Q. Xu, S. Yu, and H. Jiang, Adv. Mater. 27, 5010 (2015).CrossRefGoogle Scholar
  97. 97.
    J. Yang, F. Zhao, and B. Zeng, RSC Adv. 5, 22060 (2015).CrossRefGoogle Scholar
  98. 98.
    D. Higgins, G. Wu, H.T. Chung, U. Martinez, S. Ma, Z. Chen, and P. Zelenay, ECS Trans. 61, 35 (2014).CrossRefGoogle Scholar
  99. 99.
    S. Wu, Y. Zhu, Y. Huo, Y. Luo, L. Zhang, Y. Wan, B. Nan, L. Cao, Z. Wang, and M. Li, Sci. China Mater. 60, 654 (2017).CrossRefGoogle Scholar
  100. 100.
    J. Park, H. Lee, Y.E. Bae, K.C. Park, H. Ji, N.C. Jeong, M.H. Lee, O.J. Kwon, and C.Y. Lee, ACS Appl. Mater. Interfaces 9, 28758 (2017).CrossRefGoogle Scholar
  101. 101.
    D. Zhao, J. Shui, L.R. Grabstanowicz, C. Chen, S.M. Commet, T. Xu, J. Lu, and D. Liu, Adv. Mater. 26, 1093 (2014).CrossRefGoogle Scholar
  102. 102.
    J. Lu, W. Zhou, L. Wang, J. Jia, Y. Ke, L. Yang, K. Zhou, X. Liu, Z. Tang, and L. Li, ACS Catal. 6, 1045 (2016).CrossRefGoogle Scholar
  103. 103.
    B.Y. Guan, L. Yu, and X.W.D. Lou, Energy Environ. Sci. 9, 3092 (2016).CrossRefGoogle Scholar
  104. 104.
    F. Yin, G. Li, and H. Wang, Catal. Commun. 54, 17 (2014).CrossRefGoogle Scholar
  105. 105.
    L. Yang, N. Larouche, R. Chenitz, G. Zhang, M. Lefèvre, and J.-P. Dodelet, Electrochim. Acta 159, 184 (2015).CrossRefGoogle Scholar
  106. 106.
    S. Zhuang, B.B. Nunna, and E.S. Lee, MRS Commun. 8, 40 (2018).CrossRefGoogle Scholar
  107. 107.
    S. Liu, H. Zhang, Q. Zhao, X. Zhang, R. Liu, X. Ge, G. Wang, H. Zhao, and W. Cai, Carbon 106, 74 (2016).CrossRefGoogle Scholar
  108. 108.
    H. Zhong, J. Wang, Y. Zhang, W. Xu, W. Xing, D. Xu, Y. Zhang, and X. Zhang, Angew. Chem. Int. Ed. 53, 14235 (2014).CrossRefGoogle Scholar
  109. 109.
    W. Xia, R. Zou, L. An, D. Xia, and S. Guo, Energy Environ. Sci. 8, 568 (2015).CrossRefGoogle Scholar
  110. 110.
    Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, and J. Chen, Adv. Energy Mater. 4, 1400337 (2014).CrossRefGoogle Scholar
  111. 111.
    J. Xi, Y. Xia, Y. Xu, J. Xiao, and S. Wang, Chem. Commun. 51, 10479 (2015).CrossRefGoogle Scholar
  112. 112.
    S. Patra, S. Sene, C. Mousty, C. Serre, A. Chaussé, L. Legrand, and N. Steunou, ACS Appl. Mater. Interfaces 8, 20012 (2016).CrossRefGoogle Scholar
  113. 113.
    Q. Li, H. Pan, D. Higgins, R. Cao, G. Zhang, H. Lv, K. Wu, J. Cho, and G. Wu, Small 11, 1443 (2015).CrossRefGoogle Scholar
  114. 114.
    H. Tang, S. Cai, S. Xie, Z. Wang, Y. Tong, M. Pan, and X. Lu, Adv. Sci. 3, 1500265 (2016).CrossRefGoogle Scholar
  115. 115.
    X. Wang, H. Zhang, H. Lin, S. Gupta, C. Wang, Z. Tao, H. Fu, T. Wang, J. Zheng, and G. Wu, Nano Energy 25, 110 (2016).CrossRefGoogle Scholar
  116. 116.
    Z. Li, M. Shao, L. Zhou, Q. Yang, C. Zhang, M. Wei, D.G. Evans, and X. Duan, Nano Energy 25, 100 (2016).CrossRefGoogle Scholar
  117. 117.
    Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, M. Wei, D.G. Evans, and X. Duan, Adv. Mater. 28, 2337 (2016).CrossRefGoogle Scholar
  118. 118.
    J. Li, Y. Chen, Y. Tang, S. Li, H. Dong, K. Li, M. Han, Y.-Q. Lan, J. Bao, and Z. Dai, J. Mater. Chem. A 2, 6316 (2014).CrossRefGoogle Scholar
  119. 119.
    H. Hu, L. Han, M. Yu, Z. Wang, and X.W.D. Lou, Energy Environ. Sci. 9, 107 (2016).CrossRefGoogle Scholar
  120. 120.
    L. Zhang, X. Wang, R. Wang, and M. Hong, Chem. Mater. 27, 7610 (2015).CrossRefGoogle Scholar
  121. 121.
    W. Yang, X. Liu, L. Chen, L. Liang, and J. Jia, Chem. Commun. 53, 4034 (2017).CrossRefGoogle Scholar
  122. 122.
    X. Zhang, J. Guo, P. Guan, C. Liu, H. Huang, F. Xue, X. Dong, S.J. Pennycook, and M.F. Chisholm, Nat. Commun. 4, 1924 (2013).CrossRefGoogle Scholar
  123. 123.
    K. Manna, P. Ji, Z. Lin, F.X. Greene, A. Urban, N.C. Thacker, and W. Lin, Nat. Commun. 7, 12610 (2016).CrossRefGoogle Scholar
  124. 124.
    H. Zhang, J. Wei, J. Dong, G. Liu, L. Shi, P. An, G. Zhao, J. Kong, X. Wang, and X. Meng, Angew. Chem. 128, 14522 (2016).CrossRefGoogle Scholar
  125. 125.
    P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, and Z. Deng, Angew. Chem. Int. Ed. 55, 10800 (2016).CrossRefGoogle Scholar
  126. 126.
    Q. Lai, Y. Zhao, Y. Liang, J. He, and J. Chen, Adv. Funct. Mater. 26, 8334 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryAlzahra UniversityTehranIran
  2. 2.Department of Chemistry, Faculty of ScienceShahid Rajaee Teacher Training UniversityLavizanIran

Personalised recommendations