Lower Band Gap Sb/ZnWO4/r-GO Nanocomposite Based Supercapacitor Electrodes

  • K. BrijeshEmail author
  • H. S. Nagaraja


Sb/ZnWO4/r-GO nanocomposite has been prepared by a single step solvothermal method. The crystal structure of the prepared nanocomposite has been characterized using a powder x-ray diffractometer (XRD). The optical properties of the prepared nanocomposite were studied using UV–visible spectroscopy and photoluminescence. The energy band gap of 3.52 eV is obtained for the ZWS-5 nanocomposite using Tauc plots. For both Sb/ZnWO4 and Sb/ZnWO4/r-GO nanocomposite XRD shows the monoclinic Wolframite structure. The supercapacitor performance of the prepared samples was carried out using electrochemical techniques such as cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. The nanocomposite ZWS-5 exhibits a specific capacitance of 102 F/g, which is higher than pristine ZWS specific capacitance of 64 F/g. Both ZWS and ZWS-5 electrodes show good capacitance retention proficiency even after 1000 cycles.


Nanocomposites supercapacitor Sb/ZnWO4/r-GO 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors would like to thank DST-FIST India for providing the XRD facility of the Department of Physics NITK Surathkal.

Supplementary material

11664_2019_7185_MOESM1_ESM.pdf (114 kb)
Supplementary material 1 (PDF 113 kb)


  1. 1.
    N. Shi, S. Xiong, W. Fangfang, J. Bai, Y. Chu, H. Mao, J. Feng, and B. Xi, Eur. J. Inorg. Chem. 2017, 734 (2017).CrossRefGoogle Scholar
  2. 2.
    Y. Yang, J. Zhu, W. Shi, J. Zhou, D. Gong, G. Shaozhen, L. Wang, X. Zhi, and L. Binan, Mater. Lett. 177, 34 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Libich, J. Máca, J. Vondrák, O. Čech, and M. Sedlaříková, J. Energy Storage 17, 224 (2018).CrossRefGoogle Scholar
  4. 4.
    A. González, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016).CrossRefGoogle Scholar
  5. 5.
    T. Purkait, G. Singh, D. Kumar, M. Singh, and R.S. Dey, Sci. Rep. 8, 640 (2018).CrossRefGoogle Scholar
  6. 6.
    Q. Ke and J. Wang, J. Materiomics 2, 37 (2016).CrossRefGoogle Scholar
  7. 7.
    R. Boddula, R. Bolagam, and P. Srinivasan, Ionics 24, 1467 (2018).CrossRefGoogle Scholar
  8. 8.
    W. Yu and C. Cao, Sci. China Mater. 61, 1517 (2018).CrossRefGoogle Scholar
  9. 9.
    T. Hao, W. Wang, and Yu Dan, J. Electron. Mater. 47, 4108 (2018).CrossRefGoogle Scholar
  10. 10.
    Q. Meng, K. Cai, Y. Chen, and L. Chen, Nano Energy 36, 268 (2017).CrossRefGoogle Scholar
  11. 11.
    G.A. Snook, P. Kao, and A.S. Best, J. Power Sour. 196, 1–12 (2011).CrossRefGoogle Scholar
  12. 12.
    I. Shown, A. Ganguly, L.-C. Chen, and K.-H. Chen, Energy Sci. Eng. 3, 2 (2015).CrossRefGoogle Scholar
  13. 13.
    K.D. Fong, T. Wang, and S.K. Smoukov, Sustain. Energy Fuels 1, 1857 (2017).CrossRefGoogle Scholar
  14. 14.
    C.C. Chang and T. Imae, ACS Sustainable Chemistry & Engineering 6, 5162 (2018).CrossRefGoogle Scholar
  15. 15.
    Y.N. Sudhakar and M. Selvakumar, Ionics 22, 1729 (2016).CrossRefGoogle Scholar
  16. 16.
    T.P. Tran and Q.H. Do, J. Electron. Mater. 46, 6056 (2017).CrossRefGoogle Scholar
  17. 17.
    S. Ghosh, S.M. Jeong, and S.R. Polaki, Korean J. Chem. Eng. 35, 1389 (2018).CrossRefGoogle Scholar
  18. 18.
    Y. Liu, L. Liu, L. Kong, L. Kang, and F. Ran, Electrochim. Acta 211, 469 (2016).CrossRefGoogle Scholar
  19. 19.
    J. Theerthagiri, G. Durai, K. Karuppasamy, P. Arunachalam, V. Elakkiya, P. Kuppusami, T. Maiyalagan, and H.S. Kim, J. Ind. Eng. Chem. 67, 12 (2018).CrossRefGoogle Scholar
  20. 20.
    M.-S. Balogun, W. Qiu, W. Wang, P. Fang, L. Xihong, and Y. Tong, J. Mater. Chem. A 3, 1364 (2015).CrossRefGoogle Scholar
  21. 21.
    Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, and H.J. Fan, Adv. Sci. 3, 1500286 (2016).CrossRefGoogle Scholar
  22. 22.
    P. Liu, Y. Deng, Q. Zhang, H. Zhonghua, X. Zijie, Y. Liu, M. Yao, and Z. Ai, Ionics 21, 2797 (2015).CrossRefGoogle Scholar
  23. 23.
    H. Zhang, J. Liu, Z. Tian, Y. Ye, Y. Cai, C. Liang, and K. Terabe, Carbon 100, 590 (2016).CrossRefGoogle Scholar
  24. 24.
    Y. Zhao, W. Wang, D.-B. Xiong, G. Shao, W. Xia, Yu Shengxue, and F. Gao, Int. J. Hydrogen Energy 37, 19395 (2012).CrossRefGoogle Scholar
  25. 25.
    B. Krüner, C. Odenwald, A. Tolosa, A. Schreiber, M. Aslan, G. Kickelbick, and V. Presser, Sustain. Energy Fuels 1, 1588 (2017).CrossRefGoogle Scholar
  26. 26.
    M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel, M.D. Levi, J. Halim, P.-L. Taberna, M.W. Barsoum, P. Simon, and Y. Gogotsi, Nat. Energy 2, 17105 (2017).CrossRefGoogle Scholar
  27. 27.
    A. Sanger, A. Kumar, A. Kumar, P.K. Jain, Y.K. Mishra, and R. Chandra, Ind. Eng. Chem. Res. 55, 9452–9458 (2016).CrossRefGoogle Scholar
  28. 28.
    B. Guan, H. Lingling, G. Zhang, D. Guo, F. Tao, J. Li, H. Duan, C. Li, and Q. Li, RSC Adv. 4, 4212 (2014).CrossRefGoogle Scholar
  29. 29.
    V. Sharma, I. Singh, and A. Chandra, Sci. Rep. 8, 1307 (2018).CrossRefGoogle Scholar
  30. 30.
    L. Wang, G. Duan, J. Zhu, S.-M. Chen, X.-h. Liu, and S. Palanisamy, J. Colloid Interface Sci. 483, 73 (2016).CrossRefGoogle Scholar
  31. 31.
    M. Aliofkhazraei, A.S.H. Makhlouf, eds., Handbook of nanoelectrochemistry: Electrochemical synthesis methods, properties and characterization techniques (Springer, 2016).Google Scholar
  32. 32.
    K. Zhang, L. Lin, S. Hussain, and S. Han, J. Mater. Sci. Mater. Electron. 29, 12871 (2018).CrossRefGoogle Scholar
  33. 33.
    S. Sun, G. Jiang, Y. Liu, Yu Bo, and U. Evariste, J. Electron. Mater. 47, 5993 (2018).CrossRefGoogle Scholar
  34. 34.
    X. Zhou, M. Wang, J. Lian, and Y. Lian, Sci. China Technol. Sci. 57, 278 (2014).CrossRefGoogle Scholar
  35. 35.
    C. Chen, W. Fan, T. Ma, and F. Xuwang, Ionics 20, 1489 (2014).CrossRefGoogle Scholar
  36. 36.
    J.V. Moreira, P.W. May, E.J. Corat, A.C. Peterlevitz, R.A. Pinheiro, and H. Zanin, J. Electron. Mater. 46, 929 (2017).CrossRefGoogle Scholar
  37. 37.
    J.V.S. Moreira, E.J. Corat, P.W. May, L.D.R. Cardoso, P.A. Lelis, and H. Zanin, J. Electron. Mater. 45, 5781 (2016).CrossRefGoogle Scholar
  38. 38.
    S. Wang, F. Ma, H. Jiang, Y. Shao, W. Yongzhong, and X. Hao, ACS Appl. Mater. Interfaces. 10, 19588 (2018).CrossRefGoogle Scholar
  39. 39.
    S. Saha, M. Jana, P. Khanra, P. Samanta, H. Koo, N.C. Murmu, and T. Kuila, RSC Adv. 6, 1380 (2016).CrossRefGoogle Scholar
  40. 40.
    S. Saha, M. Jana, P. Samanta, N.C. Murmu, N.H. Kim, T. Kuila, and J.H. Lee, Mater. Chem. Phys. 190, 153 (2017).CrossRefGoogle Scholar
  41. 41.
    M. Sreejesh, N.M. Huang, and H.S. Nagaraja, Electrochim. Acta 160, 94 (2015).CrossRefGoogle Scholar
  42. 42.
    Y. Li, F. Zhou, Z. Zhu, and W. Fan, Appl. Surf. Sci. 467–468, 819 (2019).CrossRefGoogle Scholar
  43. 43.
    J. Jin, Yu Jiaguo, D. Guo, C. Cui, and W. Ho, Small 11, 5262 (2015).CrossRefGoogle Scholar
  44. 44.
    M.A. Velasco-Soto, S.A. Pérez-García, J. Alvarez-Quintana, Y. Cao, L. Nyborg, and L. Licea-Jiménez, Carbon 93, 967 (2015).CrossRefGoogle Scholar
  45. 45.
    K.Y. Lian, Y.F. Ji, X.F. Li, M.X. Jin, D.J. Ding, and Y. Luo, J. Phys. Chem. C 117, 6049 (2013).CrossRefGoogle Scholar
  46. 46.
    M. Singh, G. Kumar, N. Prakash, S.P. Khanna, P. Pal, and S.P. Singh, Semicond. Sci. Technol. 33, 045012 (2018).CrossRefGoogle Scholar
  47. 47.
    R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martínez-García, and A. Segura, EPL (Europhys. Lett.) 83, 37002 (2008).CrossRefGoogle Scholar
  48. 48.
    P. Siriwong, T. Thongtem, A. Phuruangrat, and S. Thongtem, CrystEngComm 13, 1564 (2011).CrossRefGoogle Scholar
  49. 49.
    J. Lin, J. Lin, and Y. Zhu, Inorg. Chem. 46, 8372 (2007).CrossRefGoogle Scholar
  50. 50.
    M.M.J. Sadiq, U.S. Shenoy, and D.K. Bhat, RSC Adv. 6, 61821 (2016).CrossRefGoogle Scholar
  51. 51.
    M.J.S. Mohamed and D.K. Bhat, AIMS Mater. Sci. 4, 158 (2017).CrossRefGoogle Scholar
  52. 52.
    K. Bindu, K. Sridharan, K.M. Ajith, H.N. Lim, and H.S. Nagaraja, Electrochim. Acta 217, 139 (2016).CrossRefGoogle Scholar
  53. 53.
    S.R. Ede, A. Ramadoss, U. Nithiyanantham, S. Anantharaj, and S. Kundu, Inorg. Chem. 54, 3851 (2015).CrossRefGoogle Scholar
  54. 54.
    S. Saranya, S.T. Senthilkumar, K.V. Sankar, and R.K. Selvan, J. Electroceram. 28, 220 (2012).CrossRefGoogle Scholar
  55. 55.
    J. Tang, J. Shen, N. Li, and M. Ye, J. Alloy. Compd. 666, 15 (2016).CrossRefGoogle Scholar
  56. 56.
    S. Saranya, R.K. Selvan, and N. Priyadharsini, Appl. Surf. Sci. 258, 4881 (2012).CrossRefGoogle Scholar
  57. 57.
    N. Goubard-Bretesché, O. Crosnier, C. Payen, F. Favier, and T. Brousse, Electrochem. Commun. 57, 61 (2015).CrossRefGoogle Scholar
  58. 58.
    M. Sreejesh, S. Dhanush, F. Rossignol, and H.S. Nagaraja, Ceram. Int. 43, 4895 (2017).CrossRefGoogle Scholar
  59. 59.
    Y. Li Sun, C. Tian, Y. Yang, L. Wang, J. Yin, J. Ma, R. Wang, and F. Honggang, Chemsuschem 7, 1637 (2014).CrossRefGoogle Scholar
  60. 60.
    D. Deng, N. Chen, X. Xiao, D. Shangfeng, and Y. Wang, Ionics 23, 121 (2017).CrossRefGoogle Scholar
  61. 61.
    K.S. Bhat, S. Shenoy, H.S. Nagaraja, and K. Sridharan, Electrochim. Acta 248, 188 (2017).CrossRefGoogle Scholar
  62. 62.
    K. Brijesh, K. Bindu, D. Shanbhag and H. S. Nagaraja, Int. J. Hydrogen Energy 44(2), 757–767 (2018).

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology KarnatakaSurathkal, MangaluruIndia

Personalised recommendations