Advertisement

Journal of Electronic Materials

, Volume 48, Issue 6, pp 3428–3450 | Cite as

Recent Development of Graphene-Based Ink and Other Conductive Material-Based Inks for Flexible Electronics

  • D. S. Saidina
  • N. Eawwiboonthanakit
  • M. MariattiEmail author
  • S. Fontana
  • C. Hérold
Article
  • 147 Downloads

Abstract

The promising and extraordinary properties of graphene have attracted significant interest, making graphene an alternative to replace many traditional materials for many applications, particularly in conductive ink for the fabrication of flexible electronics. For the past 10 years, numerous studies have been reported on the synthesis of graphene conductive ink for printing on flexible substrates for various electronic applications. The development of graphene-based ink is reviewed, with the main focus on the types of graphene-like materials in conductive inks, and the compositions and important properties of those inks. Another intention behind this review is to compare the pros and cons of graphene-based ink with those using other common conductive materials, such as gold nanoparticles, silver nanoparticles, copper nanoparticles, conductive polymers and carbon nanotubes. Recent works on graphene hybrid-based ink containing other metallic nanoparticles as an alternative way to improve the electrical properties of the conductive inks are also reported. Brief comparisons between inkjet printing and other printing techniques for the fabrication of flexible electronics are discussed.

Keywords

Conductive inks graphene graphene-based ink graphene hybrid-based ink flexible electronics inkjet printing 

Notes

Acknowledgments

The authors acknowledge the financial support from the Ministry of Education Malaysia through the Fundamental Research Grant Scheme (FRGS MRSA; Grant No. 6071385). The authors gratefully acknowledge also the support from Universiti Sains Malaysia, the School of Materials & Mineral Resources Engineering, Université de Lorraine, Campus France and National Centre for Scientific Research (CNRS). We were also grateful to Carbon Materials Group (E205)’s laboratory, Institut Jean Lamour, Université de Lorraine, France for the research attachment of the first author at Université de Lorraine, France.

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).Google Scholar
  2. 2.
    A. Bianco, H.M. Cheng, T. Enoki, Y. Gogotsi, R.H. Hurt, N. Koratkar, T. Kyotani, M. Monthioux, C.R. Park, J.M.D. Tascon, and J. Zhang, Carbon 65, 1 (2013).Google Scholar
  3. 3.
    A. Abdelghany, S.A. Elsherif, and H.T. Handal, Surf. Interfaces 9, 93 (2017).Google Scholar
  4. 4.
    S. Jaworski, E. Sawosz, M. Grodzik, A. Winnicka, M. Prasek, M. Wierzbicki, and A. Chwalibog, Int. J. Nanomedicine 8, 413 (2013).Google Scholar
  5. 5.
    D.A.C. Brownson and C.E. Banks, The Handbook of Graphene Electrochemistry (London: Springer, 2014).Google Scholar
  6. 6.
    P.R. Wallace, Phys. Rev. 71, 622 (1947).Google Scholar
  7. 7.
    G. Chen, W. Deng, D. Wu, C. Wu, J. Lu, P. Wang, and X. Chen, Carbon 42, 753 (2004).Google Scholar
  8. 8.
    M. Choucair, P. Thodarson, and J.A. Stride, Nat. Nanotechnol. 4, 30 (2009).Google Scholar
  9. 9.
    K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, Nature 490, 192 (2012).Google Scholar
  10. 10.
    C.T.J. Low, F.C. Walsh, M.H. Chakrabarti, M.A. Hashim, and M.A. Hussain, Carbon 54, 1 (2013).Google Scholar
  11. 11.
    L. Speyer, S. Fontana, S. Cahen, J. Ghanbaja, G. Medjahdi, and C. Hérold, Solid State Sci. 50, 42 (2015).Google Scholar
  12. 12.
    W. Cui, W. Lu, Y. Zhang, G. Lin, T. Wei, and L. Jiang, Colloids Surf. A Physicochem. Eng. Asp. 358, 35 (2010).Google Scholar
  13. 13.
    X. Nie, H. Wang, and J. Zou, Appl. Surf. Sci. 261, 554 (2012).Google Scholar
  14. 14.
    J. Kastner, T. Faury, H.M. Außerhuber, T. Obermüller, H. Leichtfried, M.J. Haslinger, E. Liftinger, J. Innerlohinger, I. Gnatiuk, D. Holzinger, and T. Lederer, Microelectron. Eng. 176, 84 (2017).Google Scholar
  15. 15.
    J.S. Kang, H.S. Kim, J. Ryu, H.T. Hahn, S. Jang, and J.W. Joung, J. Mater. Sci. Mater. Electron. 21, 1213 (2010).Google Scholar
  16. 16.
    N. Perinka, C.H. Kim, M. Kaplanova, and Y. Bonnassieux, Phys. Proc. 44, 120 (2013).Google Scholar
  17. 17.
    S. Khan, L. Lorenzelli, and R.S. Dahiya, IEEE Sens. J. 15, 3164 (2015).Google Scholar
  18. 18.
    S.D. Hoath, Fundamentals Of Inkjet Printing (Weinheim: Wiley-VCH, 2016).Google Scholar
  19. 19.
    W. Yang and C. Wang, J. Mater. Chem. C 4, 7193 (2016).Google Scholar
  20. 20.
    R. Banfield, Specialist printing worldwide: issue one (2013), https://www.appliedinksolutions.com/pdf/sp11340-43.pdf. Accessed October 2018.
  21. 21.
    D.A. Roberson, R.B. Wicker, L.E. Murr, K. Church, and E. Macdonald, Materials (Basel) 4, 963 (2011).Google Scholar
  22. 22.
    H.W. Choi, T. Zhou, M. Singh, and G.E. Jabbour, Nanoscale 7, 3338 (2015).Google Scholar
  23. 23.
    L. Liu, X. Wan, L. Sun, S. Yang, Z. Dai, Q. Tian, M. Lei, X. Xiao, C. Jiang, and W. Wu, RSC Adv. 5, 9783 (2015).Google Scholar
  24. 24.
    M. Stoppa and A. Chiolerio, Sensors (Basel) 14, 11957 (2014).Google Scholar
  25. 25.
    H. Zervos, Printed electronics market update—opportunities for the printing industry, http://www.inprintshow.com/usa/conference/pdf/Harry-Zervos.pdf. Accessed September 2018.
  26. 26.
    A. Capasso, A.E. Del Rio Castillo, H. Sun, A. Ansaldo, V. Pellegrini, and F. Bonaccorso, Solid State Commun. 224, 53 (2015).Google Scholar
  27. 27.
    A. Denneulin, J. Bras, F. Carcone, C. Neuman, and A. Blayo, Carbon 49, 2603 (2011).Google Scholar
  28. 28.
    A. Kamyshny and S. Magdassi, Small 10, 3515 (2014).Google Scholar
  29. 29.
    Y. Li, D. Lu, and C.P. Wong, Electrical Conductive Adhesives with Nanotechnologies (New York: Springer, 2010).Google Scholar
  30. 30.
    K. Arapov, R. Abbel, G. de With, and H. Friedrich, Faraday Discuss. 173, 323 (2014).Google Scholar
  31. 31.
    L. Huang, Y. Huang, J. Liang, X. Wan, and Y. Chen, Nano Res. 4, 675 (2011).Google Scholar
  32. 32.
    L. Pei and Y.F. Li, RSC Adv. 7, 51711 (2017).Google Scholar
  33. 33.
    Y. Gao, W. Shi, W. Wang, Y. Leng, and Y. Zhao, Ind. Eng. Chem. Res. 53, 16777 (2014).Google Scholar
  34. 34.
    F. Miao, S. Majee, M. Songa, J. Zhao, S.L. Zhang, and Z.B. Zhang, Synth. Met. 220, 318 (2016).Google Scholar
  35. 35.
    S. Majee, C. Liu, B. Wu, S.L. Zhang, and Z.B. Zhang, Carbon 114, 77 (2017).Google Scholar
  36. 36.
    P. He and B. Derby, 2D Mater. 4, 021021 (2017).Google Scholar
  37. 37.
    Y. Su, J. Du, D. Sun, C. Liu, and H. Cheng, Nano Res. 6, 842 (2013).Google Scholar
  38. 38.
    E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, and M.C. Hersam, J. Phys. Chem. Lett. 4, 1347 (2013).Google Scholar
  39. 39.
    E.B. Secor, B.Y. Ahn, T.Z. Gao, J.A. Lewis, and M.C. Hersam, Adv. Mater. 27, 6683 (2015).Google Scholar
  40. 40.
    E.B. Secor, T.Z. Gao, A.E. Islam, R. Rao, S.G. Wallace, J. Zhu, K.W. Putz, B. Maruyama, and M.C. Hersam, Chem. Mater. 29, 2332 (2017).Google Scholar
  41. 41.
    A. Iwakoshi, T. Nanke, and T. Kobayashi, Gold Bull. 38, 107 (2005).Google Scholar
  42. 42.
    C. Schoner, A. Tuchscherer, T. Blaudeck, S.F. Jahn, R.R. Baumann, and H. Lang, Thin Solid Films 531, 147 (2013).Google Scholar
  43. 43.
    K. Rajan, I. Roppolo, A. Chiappone, S. Bocchini, D. Perrone, and A. Chiolerio, Nanotechnol. Sci. Appl. 9, 1 (2016).Google Scholar
  44. 44.
    A. Kamyshny, M. Ben-Moshe, S. Aviezer, and S. Magdassi, Macromol. Rapid Commun. 26, 281 (2005).Google Scholar
  45. 45.
    I. Kim, T.M. Lee, and J. Kim, J. Alloy. Compd. 596, 158 (2014).Google Scholar
  46. 46.
    X. Zhou, W. Li, M. Wu, S. Tang, and D. Liu, Appl. Surf. Sci. 292, 537 (2014).Google Scholar
  47. 47.
    Z. Zhang and W. Zhu, J. Alloy. Compd. 649, 687 (2015).Google Scholar
  48. 48.
    D.G. Lee, D.K. Kim, Y.J. Moon, and S.J. Moon, Thin Solid Films 546, 443 (2013).Google Scholar
  49. 49.
    S. Vunnam, K. Ankireddy, J. Kellar, and W. Cross, Thin Solid Films 531, 294 (2013).Google Scholar
  50. 50.
    B.J. de Gans, P.C. Duineveld, and U.S. Schubert, Adv. Mater. 16, 203 (2004).Google Scholar
  51. 51.
    C.Y. Tsai, W.C. Chang, G.L. Chen, C.H. Chung, J.X. Liang, W.Y. Ma, and T.N. Yang, Nanoscale Res. Lett. 10, 357 (2015).Google Scholar
  52. 52.
    Y.T. Kwon, Y.I. Lee, S. Kim, K.J. Lee, and Y.H. Choa, Appl. Surf. Sci. 396, 1239 (2017).Google Scholar
  53. 53.
    W. Xu, X. Dai, T. Zhang, and T. Wang, Chem. Eng. Sci. 190, 40 (2018).Google Scholar
  54. 54.
    Y. Lee, J.R. Choi, K.J. Lee, N.E. Stott, and D. Kim, Nanotechnology 19, 415604 (2008).Google Scholar
  55. 55.
    M. Berkei, Conductive coatings using carbon nanotubes: a fascinating material for the coating producer’s toolbox. (CHEManager, Europe, 2011).Google Scholar
  56. 56.
    P. Mukhopadhyay and R.K. Gupta, Graphite, Graphene, and Their Polymer Nanocomposites, 1st ed. (Boca Raton: CRC Press, 2013).Google Scholar
  57. 57.
    K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, and P.M. Ajayan, Small 2, 1021 (2006).Google Scholar
  58. 58.
    W. Zhou, A.B. Belay, K. Davis, N.S. Hickman, in 38th IEEE Photovoltaic Specialists Conference, vol. 2324 (2012).Google Scholar
  59. 59.
    Y. Sabba and E.L. Thomas, Macromolecules 37, 4815 (2004).Google Scholar
  60. 60.
    D.M. Kernan and W.J. Blau, Europhys. Lett. 83, 66009 (2008).Google Scholar
  61. 61.
    E. Song, R.P. Tortorich, T.H. da Costa, and J.W. Choi, Microelectron. Eng. 145, 143 (2015).Google Scholar
  62. 62.
    M.V. Kulkarni, S.K. Apte, S.D. Naik, J.D. Ambekar, and B.B. Kale, Sens. Actuators B Chem. 178, 140 (2013).Google Scholar
  63. 63.
    Z. Stempien, T. Rybicki, E. Rybicki, M. Kozanecki, and M.I. Szynkowska, Synth. Met. 202, 49 (2015).Google Scholar
  64. 64.
    J.B. Schlenoff and H. Xu, J. Electrochem. Soc. 139, 2397 (1992).Google Scholar
  65. 65.
    H.S. Abdulla and A.I. Abbo, Int. J. Electrochem. Sci. 7, 10666 (2012).Google Scholar
  66. 66.
    A.A.A. Almario and R.L.T. Caceres, J. Chil. Chem. Soc. 54, 14 (2009).Google Scholar
  67. 67.
    S.A. Popli and U.D. Patel, J. Electrochem. Sci. Eng. 5, 145 (2015).Google Scholar
  68. 68.
    Y. Hong, J. Kanicki, and I.E.E.E. Trans, Electron. Dev. 51, 1562 (2004).Google Scholar
  69. 69.
    J. Ha, J. Park, J. Ha, D. Kim, S. Chung, C. Lee, and Y. Hong, Org. Electron. 19, 147 (2015).Google Scholar
  70. 70.
    M.T. Sharbati, Graphene quantum dot-based organic light emitting diodes, Master’s Thesis, University of Pittsburgh, 2016.Google Scholar
  71. 71.
    L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J.R. Reynolds, Adv. Mater. 12, 481 (2000).Google Scholar
  72. 72.
    Y.H. Kim, C. Sachse, M.L. Machala, C. May, L. Müller-Meskamp, and K. Leo, Adv. Funct. Mater. 21, 1076 (2011).Google Scholar
  73. 73.
    H. Abroshan, H. Akbarzadeh, F. Taherkhani, and G. Parsafar, Mol. Phys. 109, 709 (2011).Google Scholar
  74. 74.
    J. Cho, K.H. Shin, and J. Jang, Thin Solid Films 518, 5066 (2010).Google Scholar
  75. 75.
    J. Chang, J. He, D. Li, and A.C.S. Appl, Mater. Interfaces 10, 19116 (2018).Google Scholar
  76. 76.
    Y. Xu, I. Hennig, D. Freyberg, A.J. Strudwick, M.G. Schwab, T. Weitz, and K.C.P. Cha, J. Power Sources 248, 483 (2014).Google Scholar
  77. 77.
    D. Li, J. Huang, and R.B. Kaner, Acc. Chem. Res. 42, 135 (2009).Google Scholar
  78. 78.
    W. Yang, C. Wang, V. Arrighi, and F. Vilela, J. Mater. Sci. Mater. Electron. 28, 8218 (2017).Google Scholar
  79. 79.
    D. Deng, S. Feng, M. Shi, and C. Huang, J. Mater. Sci. Mater. Electron. 28, 15411 (2017).Google Scholar
  80. 80.
    W. Zhang, E. Bi, M. Li, and L. Gao, Colloids Surf. A Physicochem. Eng. Asp. 490, 232 (2016).Google Scholar
  81. 81.
    L. Li, M. Gao, Y. Guo, J. Sun, Y. Li, F. Li, Y. Song, and Y. Li, J. Mater. Chem. C 5, 2800 (2017).Google Scholar
  82. 82.
    A. Ji, Y. Chen, X. Wang, and C. Xu, J. Mater. Sci. Mater. Electron. 29, 13032 (2018).Google Scholar
  83. 83.
    R. Zhang, B. Peng, and Y. Yuan, Compos. Sci. Technol. 168, 118 (2018).Google Scholar
  84. 84.
    E. Jewell, S. Hamblyn, T. Claypole, and D. Gethin, Coatings 5, 172 (2015).Google Scholar
  85. 85.
    T.S. Tran, N.K. Dutta, and N.R. Choudhury, Adv. Colloid Interface Sci. 261, 41 (2018).Google Scholar
  86. 86.
    W. Shen, X. Zhang, Q. Huang, Q. Xu, and W. Song, Nanoscale 6, 1622 (2014).Google Scholar
  87. 87.
    W. Zapka, Handbook of Industrial Inkjet Printing: A Full System Approach (Weinheim: Wiley-VCH, 2018).Google Scholar
  88. 88.
    E. Svanholm, Printability and ink-coating interactions in inkjet printing, Dissertation, Karlstad University Studies, 2007.Google Scholar
  89. 89.
    Y.L. Tai and Z.G. Yang, Surf. Interface Anal. 44, 529 (2012).Google Scholar
  90. 90.
    R. Dang, L. Song, W. Dong, C. Li, X. Zhang, G. Wang, and X. Chen, ACS Appl. Mater. Interfaces 6, 622 (2014).Google Scholar
  91. 91.
    T. Martin, SGIA J. 3, 5 (2005).Google Scholar
  92. 92.
    A.J. Kell, C. Paquet, O. Mozenson, I. Djavani-Tabrizi, B. Deore, X. Liu, G.P. Lopinski, R. James, K. Hettak, J. Shaker, A. Momciu, J. Ferrigno, O. Ferrand, J.X. Hu, S. Lafreniere, and P.R.L. Malenfant, ACS Appl. Mater. Interfaces 9, 17226 (2017).Google Scholar
  93. 93.
    Y. Zhang, P. Zhu, G. Li, T. Zhao, X. Fu, R. Sun, F. Zhou, and C.P. Wong, ACS Appl. Mater. Interfaces 6, 560 (2014).Google Scholar
  94. 94.
    H.J. Hwang, K.H. Oh, and H.S. Kim, Sci. Rep. 6, 19696 (2016).Google Scholar
  95. 95.
    S. Magdassi, The Chemistry of Inkjet Inks (Singapore: World Scientific Publishing Company, 2010).Google Scholar
  96. 96.
    M.C. Dang, T.M.D. Dang, and E. Fribourg-Blanc, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 015009 (2013).Google Scholar
  97. 97.
    A.I. Titkov, O.G. Bukhanets, R.M. Gadirov, Y.M. Yukhin, and N.Z. Lyakhov, Inorg. Mater. Appl. Res. 6, 375 (2015).Google Scholar
  98. 98.
    M.J. Large, S.P. Ogilvie, M. Meloni, A. Amorim Graf, G. Fratta, J. Salvage, A.A.K. King, and A.B. Dalton, Nanoscale 10, 1582 (2018).Google Scholar
  99. 99.
    V. Chovancova, A. Pekarovicova, P.D. Fleming, in Proceedings of the Society For Imaging Science And Technology, vol. 143 (2005).Google Scholar
  100. 100.
    D.S. Viswanath, T. Ghosh, D.H.L. Prasad, N.V.K. Dutt, and K.Y. Rani, Visocsity of Liquids (Dordrecht: Springer, 2007).Google Scholar
  101. 101.
    L. Dybowska-Sarapuk, K. Kielbasinski, A. Arazna, K. Futera, A. Skalski, D. Janczak, M. Sloma, and M. Jakubowska, Nanomaterials 8, 602 (2018).Google Scholar
  102. 102.
    P. Ihalainen, A. Määttänen, and N. Sandler, Int. J. Pharm. 494, 585 (2015).Google Scholar
  103. 103.
    D.J. Shaw, Introduction to Colloid and Surface Chemistry, 4th ed. (Oxford: Butterworth-Heinemann, 1996).Google Scholar
  104. 104.
    K. Woo, D. Jang, Y. Kim, and J. Moon, Ceram. Int. 39, 7015 (2013).Google Scholar
  105. 105.
    M. Michel, J.A. Desai, C. Biswas, and A.B. Kaul, Nanotechnology 27, 1 (2016).Google Scholar
  106. 106.
    G. Cummins and M.P.Y. Desmulliez, Circuit Word 38, 193 (2012).Google Scholar
  107. 107.
    P. Li, C.A. Tao, B. Wang, J. Huang, T. Li, and J. Wang, J. Nanosci. Nanotechnol. 18, 713 (2018).Google Scholar
  108. 108.
    J.T. Wu, S.L.C. Hsu, M.H. Tsai, and W.S. Hwang, Thin Solid Films 517, 5913 (2009).Google Scholar
  109. 109.
    M. Vaseem, K.M. Lee, A.R. Hong, Y.B. Hahn, and A.C.S. Appl, Mater. Interfaces 4, 3300 (2012).Google Scholar
  110. 110.
    T. Öhlund, J. Örtegren, S. Forsberg, and H.E. Nilsson, Appl. Surf. Sci. 259, 731 (2012).Google Scholar
  111. 111.
    S. Jeong, H.C. Song, W.W. Lee, S.S. Lee, Y. Choi, W. Son, E.D. Kim, C.H. Paik, S.H. Oh, and B.H. Ryu, Langmuir 27, 3144 (2011).Google Scholar
  112. 112.
    I.C. Cheng and S. Wagner, Overview of Flexible Electronics Technology (Boston: Springer, 2009).Google Scholar
  113. 113.
    D.A. Clark, Major trends in gravure printed electronics, BS thesis, California Polytechnic State University, 2010.Google Scholar
  114. 114.
    J. Yang, D. Vak, N. Clark, J. Subbiah, W.W.H. Wong, D.J. Jones, S.E. Watkins, and G. Wilson, Solar Energy Mater. Sol. Cells 109, 47 (2013).Google Scholar
  115. 115.
    R.R. Søndergaard, M. Hösel, and F.C. Krebs, J. Polym. Sci. Part B Polym. Phys. 51, 16 (2013).Google Scholar
  116. 116.
    J. Siden, H.E. Nilsson, in International Symposium on Antennas and Propagation Society, vol. 1745 (2007).Google Scholar
  117. 117.
    P.F. Moonen, I. Yakimets, and J. Huskens, Adv. Mater. 24, 5526 (2012).Google Scholar
  118. 118.
    F.C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T.D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, Solar Energy Mater. Sol. Cells 93, 422 (2009).Google Scholar
  119. 119.
    A. Mahajan, C.D. Frisbie, L.F. Francis, and A.C.S. Appl, Mater. Interfaces 5, 4856 (2013).Google Scholar
  120. 120.
    E. Jabari and E. Toyserkani, Carbon 91, 321 (2015).Google Scholar
  121. 121.
    T. Seifert, E. Sowade, F. Roscher, M. Wiemer, T. Gessner, and R.R. Baumann, Ind. Eng. Chem. Res. 54, 769 (2015).Google Scholar
  122. 122.
    L. Kubáč and O. Kodym, MATEC Web Conf. 134, 00027 (2017).Google Scholar
  123. 123.
    Y. Zheng, S. Li, W. Shi, and J. Yu, Nanoscale Res. Lett. 9, 145 (2014).Google Scholar
  124. 124.
    M. Eslamian, Coatings 4, 60 (2014).Google Scholar
  125. 125.
    P. Calvert, Chem. Mater. 13, 3299 (2001).Google Scholar
  126. 126.
    Y. Aleeva and B. Pignataro, J. Mater. Chem. C 2, 6436 (2014).Google Scholar
  127. 127.
    M. Singh, H.M. Haverinen, P. Dhagat, and G.E. Jabbour, Adv. Mater. 22, 673 (2010).Google Scholar
  128. 128.
    P. Mariani, L. Vesce, and A. Di Carlo, Semicond. Sci. Technol. 30, 104003 (2015).Google Scholar
  129. 129.
    H.P. Le, J. Imaging Sci. Technol. 42, 49 (1998).Google Scholar
  130. 130.
    D. Wallace, D. Hayes, T. Chen, V. Shah, D. Radulescu, P. Cooley, K. Wachtler, A. Nallani, in Proceedings of the First International Conference on Integration and Commercialization of Micro and Nanosystems, China, vol. 1161 (2007).Google Scholar
  131. 131.
    G.K. Lau and M. Shrestha, Micromachines 8, 194 (2017).Google Scholar
  132. 132.
    F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, and A.C. Ferrari, ACS Nano. 6, 2992 (2012).Google Scholar
  133. 133.
    N. Karim, S. Afroj, A. Malandraki, S. Butterworth, C. Beach, M. Rigout, K.S. Novoselov, A.J. Casson, and S.G. Yeates, J. Mater. Chem. C 5, 11640 (2017).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials and Mineral Resources Engineering, Engineering CampusUniversiti Sains MalaysiaNibong TebalMalaysia
  2. 2.Institut Jean Lamour, Campus ArtemNancy CedexFrance

Personalised recommendations