Skip to main content
Log in

First Principles Approach to Study the Structural, Electronic and Transport Properties of Dimer Chitosan with Graphene Electrodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Chitosan is a candidate biomaterial as an electro-active polymer, since it has its two isomers, referred to as cis (c–CH) and trans (t–CH) chitosan. In this theoretical study, the structural, electronic and transport properties of these two isomers are reported. Calculations based on density functional theory find c–CH and t–CH molecular isomers to be insulating. The device configuration consisting of graphene electrodes and chitosan molecules in the presence of an applied electric field showed a noticeable difference between c–CH and t–CH in IV curves. From projected density of states and density of states analysis, the calculated forbidden energy gap (Eg) of t–CH is reduced by 0.5 eV; therefore, t–CH shows semiconducting behaviour and works as an ionic electro-active polymer. Charge density curves exhibit the charge distribution and electrostatic interactions of atoms. The aim of this work is to study the ionic electro-active actuator behaviour of chitosan for its various applications such as bioelectronics, biomedical and electrochemical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Lee, S.J. Lee, H.J. An, S.E. Cha, J.K. Chang, B. Kim, and J.J. Pak, Int. Soc. Opt. Eng. (2002). https://doi.org/10.1117/12.475196.

    Google Scholar 

  2. R. Mutlu, G. Alici, and W. Li, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (2003), pp. 1096–1101.

  3. K. Wei, G. Zhu, Y. Tang, and X. Li, Polym. J. 45, 671 (2013).

    Article  Google Scholar 

  4. K. Kaneto and J. Phys, Conf. Ser. 704, 012004 (2016).

    Article  Google Scholar 

  5. S. Leary and Y. Bar-Cohen, in SPIE’s 6th Annual International Symposium on Smart Structures and Materials, Newport Beach, CA. (1999), Paper No. 3669-09.

  6. E.D. Wilson, T. Assaf, M.J. Pearson, J.M. Rossiter, S.R. Anderson, J. Porrill, and P. Dean, J. R. Soc. Interface (2016). https://doi.org/10.1098/rsif.2016.0547.

    Google Scholar 

  7. U. Deole, R. Lumia, M. Shahinpoor, and M. Bermudez, J. Micro-Nano Mech. 4, 95 (2008).

    Article  Google Scholar 

  8. X. Yuan, J. Phys Conf. Ser. 744, 012077 (2016).

    Article  Google Scholar 

  9. A. Aczel, Procedia. Eng. (2012). https://doi.org/10.1016/j.proeng.2012.09.477.

    Google Scholar 

  10. M. Kruusmaa and P. Fiorini, ASTRA 2006 (Noordwijk: ESTEC, 2006), pp. 28–30.

    Google Scholar 

  11. J. Lin, W. Qu, and S. Zhang, Biochem. Anal. 360, 288 (2006).

    Article  Google Scholar 

  12. S. Skovstrup, S.G. Hansen, T. Skrydstrup, and B. Schiott, Biomacro (2010). https://doi.org/10.1021/bm100736w.

    Google Scholar 

  13. E.F. Franca, R.D. Lins, L.C.G. Freitas, and T.P. Straatsma, J. Chem. Theory Comput. 4, 2141 (2008).

    Article  Google Scholar 

  14. H.K. No and S.P. Meyers, J. Agric. Food Chem. 37, 580 (1989).

    Article  Google Scholar 

  15. J. Kawada, T. Yui, K. Okuyama, and K. Ogawa, Biosci. Biotech. Biochem. (2001). https://doi.org/10.1271/bbb.65.2542.

    Google Scholar 

  16. Y. Wu, W. Yang, C. Wang, J. Hu, and S. Fu, Int. J. Pharm. (2005). https://doi.org/10.1016/j.ijpharm.2005.01.042.

    Google Scholar 

  17. X.L. Luo, J.J. Xu, Y. Du, and H.Y. Chen, Anal. Biochem. (2004). https://doi.org/10.1016/j.ab.2004.07.005.

    Google Scholar 

  18. B. Yin, R. Yuan, Y.Q. Chai, S.H. Chen, S.R. Cao, Y. Xu, and P. Fu, Biotech. Lett. 30, 317 (2008).

    Article  Google Scholar 

  19. Z.X. Tang, J.Q. Qian, and L.E. Shi, Mater. Lett. 61, 37 (2007).

    Article  Google Scholar 

  20. M. Yang, Y. Yang, B. Liu, G. Shen, and R. Yu, Sens. Actuator B Chem. 101, 269 (2004).

    Article  Google Scholar 

  21. A.R. Juarez, H.H. Cocoletzi, and E.C. Anota, Rev. Mex. Ing. Quím. 14, 789 (2015).

    Google Scholar 

  22. L.A.J. Moralesa, H.H. Cocoletzi, E.C. Anota, E.Á. Almanza, and M.G.T. Arvide, Curr. Org. Chem. (2017). https://doi.org/10.2174/1385272821666170511165159.

    Google Scholar 

  23. V.K. Mourya and N.N. Inamdar, React. Func. Polym. 68, 1013 (2008).

    Article  Google Scholar 

  24. K. Kurita, Mari. Biotech. 8, 203 (2006).

    Article  Google Scholar 

  25. Q. He, M. Yu, X. Yang, K.J. Kim, and Z. Dai, Smart Mater. Struct. (2015). https://doi.org/10.1088/0964-1726/24/6/065026.

    Google Scholar 

  26. S. Alwarappan, K. Cissell, S. Dixit, C.Z. Li, and S. Mohapatra, J. Elect. Chem. (2012). https://doi.org/10.1016/j.jelechem.2012.09.026.

    Google Scholar 

  27. M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, and G.R. Hutchison, J. Cheminform. (2012). https://doi.org/10.1186/1758-2946-4-17.

    Google Scholar 

  28. J.P. Perdew and A. Zunger, Phys. Rev B. (1981). https://doi.org/10.1103/physrevb.23.5048.

    Google Scholar 

  29. M.S. Jose, A. Emilio, D.G. Julian, G. Alberto, J. Javier, and O. Pablo, J. Phys. Condens. Matt. 14, 2745 (2002).

    Article  Google Scholar 

  30. S. Wen, W. Guan, J. Wang, Z. Lang, L. Yan, and Z. Su, Dalton Trans. (2012). https://doi.org/10.1039/c2dt12465c.

    Google Scholar 

  31. M. Ioelovich, Am. J. BioSci. (2014). https://doi.org/10.11648/j.ajbio.s.20140201.12.

    Google Scholar 

  32. K. Yang, R. Peverati, D.G. Truhlar, and R. Valero, J. Chem. Phys. 135, 044118 (2011).

    Article  Google Scholar 

  33. N.E. Schultz, Y. Zhao, and D.G. Truhlar, J. Phys. Chem. A. (2015). https://doi.org/10.1021/jp0539223.

    Google Scholar 

  34. F. Akman, Cellulose Chem. Technol. 51, 253 (2017).

    Google Scholar 

  35. M. Zemzemi and S. Alaya, Mater. Sci. Appl. 6, 661 (2015).

    Google Scholar 

  36. J.Q. Lu, J. Wu, H. Chen, W. Duan, B.L. Gu, and Y. Kawazoe, Phys. Lett. A 323, 154 (2004).

    Article  Google Scholar 

  37. A. Pahuja and S. Srivastava, Hindawi Phys. Res. Int. (2014). https://doi.org/10.1155/2014/872381.

    Google Scholar 

  38. M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

  39. H. Nakamura, A.R. Rocha, and S. Sanvito, Phys. Rev. B Condens. Matt. (2008). https://doi.org/10.1103/physrevb.78.235420.

    Google Scholar 

  40. K. Selvaraju, M. Jothi, and P. Kumaradhas, J. Comput. Theor. Nanosci. 10, 1 (2013).

    Article  Google Scholar 

  41. A. Shafiee, M.M. Salleh, and M. Yahaya, Sains Malays. 40, 173 (2011).

    Google Scholar 

  42. P.I. Djurovich, E.I. Mayo, S.R. Forest, and M.E. Thompson, Org. Elect. 10, 515 (2009).

    Article  Google Scholar 

  43. T. Rangel, G.M. Rignanese, and V. Olevano, Beilstein J. Nanotechnol. 6, 1247 (2015).

    Article  Google Scholar 

  44. V. Balachandran, A. Lakshmi, and A. Janaki, J. Mol. Struct. 1006, 395 (2011).

    Article  Google Scholar 

  45. S. Datta, Superlattices Microstruct. (2000). https://doi.org/10.1006/spmi.2000.0920.

    Google Scholar 

  46. S.J.V. Molen and P. Liljeroth, J. Phys Conden. Matt. 22, 133001 (2010).

    Article  Google Scholar 

  47. H. He, R. Pandey, I. Boustani, and S.P. Karna, J. Phys. Chem. C 114, 4149 (2010).

    Article  Google Scholar 

  48. K. Stokbro, M. Brandbyge, J. Taylor, and P. Ordejon, Nanotech (2003). https://doi.org/10.1196/annals.1292.014.

    Google Scholar 

  49. M.D. Ventra, N.D. Lang, and S.T. Pantelides, Chem. Phys. 281, 189 (2002).

    Article  Google Scholar 

  50. C. Zhang, Y. He, H.P. Cheng, Y. Xue, M.A. Ratner, X.G. Zhang, and P. Krstic, Phys. Rev. B 73, 125445 (2006).

    Article  Google Scholar 

  51. N.A. Zimbovskaya and M.R. Pederson, Phys. Rep. 509, 1 (2011).

    Article  Google Scholar 

  52. M.U. Farooq, A. Hashmi, and J. Hong, Sci. Rep. 5, 12482 (2015).

    Article  Google Scholar 

  53. M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, and J.M. Tour, App. Phys. Lett. 78, 3735 (2001).

    Article  Google Scholar 

  54. C.P. Husband, S.M. Husband, J.S. Daniels, and J. Tour, IEEE Trans. Elect. Dev. (2003). https://doi.org/10.1109/ted.2003.815860.

    Google Scholar 

  55. S.Y. Quek, J.B. Neaton, M.S. Hybertsen, E. Kaxiras, and S.G. Louie, Phys. Rev. Lett. 98, 066807 (2007).

    Article  Google Scholar 

  56. R. Pati, M. McClain, and A. Bandyopadhyay, Phys. Rev. Lett. 100, 246801 (2008).

    Article  Google Scholar 

  57. S. Guo, J.M. Artés, and I.D. Pérez, Electrochim. Acta (2013). https://doi.org/10.1016/j.electacta.2013.03.146.

    Google Scholar 

  58. R.G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963).

    Article  Google Scholar 

  59. R.G. Pearson, J. Chem. Educ. 45, 581 (1968).

    Article  Google Scholar 

  60. R.G. Pearson, J. Chem. Educ. 45, 643 (1968).

    Article  Google Scholar 

  61. R.G. Amorim, X. Zhong, S. Mukhopadhyay, R. Pandey, A.R. Rocha, and S.P. Karna, J. Phys. Condens Matt. 25, 195801 (2013).

    Article  Google Scholar 

  62. F.L. Hirshfeld, Theor. Chim. Acta 44, 129 (1977).

    Article  Google Scholar 

  63. R.G. Pearson, Proc. Nati. Acad. Sci. USA 83, 8440 (1986).

    Article  Google Scholar 

  64. J.H. Tan, L. Guo, T.M. Lv, and S.T. Zhang, Int. J. Electrochem. Sci. 10, 823 (2015).

    Google Scholar 

  65. E.G. Demissie, S.B. Kassa, and G.W. Woyessa, Int. J. Sci. Eng. Res. 5, 304 (2014).

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to the management of Shri Shankracharya Technical Campus, Bhilai, for their kind support in this work. The authors would also like to extend their sincere thanks to Prof. Ravindra Pandey, Michigan Technological University and Dr. Rodrigo G. Amorim, Department of Physics and Astrology, Uppsala University, Uppsala, Sweden, for their fruitful guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upma, Verma, M.L. First Principles Approach to Study the Structural, Electronic and Transport Properties of Dimer Chitosan with Graphene Electrodes. J. Electron. Mater. 48, 4007–4016 (2019). https://doi.org/10.1007/s11664-019-07163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07163-0

Keywords

Navigation