Skip to main content
Log in

Enhanced Anti-Corrosion Protection of Carbon Steel with Silica-Polypyrrole-Dodecyl Sulfate Incorporated into Epoxy Coating

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanocomposites based on silica, polypyrrole, and sodium dodecyl sulfate dopant (SiO2-PPy-DoS) were synthesized by an in situ polymerization method. The characterizations of the synthesized materials were analyzed using Fourier-transform infrared spectroscopy, energy dispersive x-ray analysis, scanning electron microscopy, thermal gravimetric analysis, and x-ray photoelectron spectroscopy. The results showed that the SiO2-PPy-DoS composite had spherical shape with size of around 250–500 nm. The electrical conductivity of the SiO2-PPy-DoS nanocomposite was measured to be around 0.287 S/cm, which was larger than that of SiO2-PPy (0.101 S/cm). An enhanced anti-corrosion protection of carbon steel substrate (CT3) using an epoxy coating containing SiO2-PPy-DoS was achieved with an impedance modulus value of 108 Ω cm−2 at 10 mHz after 840 h soaked in NaCl solution of 3%, indicating that DoS can be used as an additive to improve anti-corrosion capacity for carbon steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Hansson, Metall. Mater. Trans. A 42A, 2952 (2011).

    Article  Google Scholar 

  2. A. Popoola, O.E. Olorunniwo, and O.O. Ige, Developments in Corrosion Protection, ed. M. Aliofkhazraei (IntechOpen: Rijeka, 2014), p. 241.

    Google Scholar 

  3. S.S. Pathak, S.K. Mendon, M.D. Blanton, and J.W. Rawlins, Metals 2, 353 (2012).

    Article  Google Scholar 

  4. C. Edeleanu, Platin. Met. Rev. 4, 86 (1960).

    Google Scholar 

  5. G. Williams, S. Geary, and H.N. McMurray, Corros. Sci. 57, 139 (2012).

    Article  Google Scholar 

  6. R. Vera, R. Schrebler, P. Greza, and H. Romero, Prog. Org. Coat. 77, 853 (2014).

    Article  Google Scholar 

  7. Y.W. Song, D.Y. Shan, and E.H. Han, Electrochim. Acta 53, 2135 (2008).

    Article  Google Scholar 

  8. R.R. Hussain, J. Civil Environ. Eng. (2014). https://doi.org/10.4172/2165-784X.1000e116.

    Google Scholar 

  9. S.D.A.S. Ramôa, G.M.O. Barra, C. Merlini, W.H. Schreiner, S. Livi, and B.G. Soares, Appl. Clay Sci. 104, 160 (2015).

    Article  Google Scholar 

  10. E. Hur, G.O. Bereket, and Y.U. Sahin, Mater. Chem. Phys. 100, 19 (2006).

    Article  Google Scholar 

  11. J.G. Hyun, S.D. Cho, and K.W. Paik, J. Electron. Mater. 34, 1264 (2006).

    Article  Google Scholar 

  12. V.T.H. Vu, T.T.M. Dinh, N.T. Pham, T.T. Nguyen, P.T. Nguyen, and H.T.X. To, Int. J. Corros. (2018). https://doi.org/10.1155/2018/6395803/.

    Google Scholar 

  13. V.T.H. Vu, N.T. Pham, T.T. Nguyen, P.T. Nguyen, H.T.X. To, and T.T.M. Dinh, Vietnam J. Chem. 55, 781 (2017).

    Google Scholar 

  14. V.T.H. Vu, H.T.X. To, N.T. Pham, P.T. Nguyen, T.T. Nguyen, D. Didier, and T.T.M. Dinh, J. Nanosci. Nanotech. (2018). https://doi.org/10.1166/jnn.2018.15198.

    Google Scholar 

  15. N. Romyen, S. Thongyai, P. Praserthdam, and S. Wacharawichanant, J. Electron. Mater. 46, 6709 (2017).

    Article  Google Scholar 

  16. S. Konwer, R. Boruah, and S.K. Dolui, J. Electron. Mater. 40, 2448 (2011).

    Article  Google Scholar 

  17. J. Wang, Y. Xu, X. Sun, S. Mao, and F. Xiao, J. Electrochem. Soc. 154, C445 (2007).

    Article  Google Scholar 

  18. K. Yoshino, K. Kaneto, and S. Takeda, Synth. Met. 18, 741 (1987).

    Article  Google Scholar 

  19. M. Rohwerder, Int. J. Mat. Res. 100, 1331 (2009).

    Article  Google Scholar 

  20. N. Su, H.B. Li, S.J. Yuan, S.P. Yi, and E.Q. Yin, Expr. Polym. Lett. 6, 697 (2012).

    Article  Google Scholar 

  21. K. Qi, Y. Qiu, Z. Chen, and X. Guo, Corros. Sci. 60, 50 (2012).

    Article  Google Scholar 

  22. S.H. Yang, C.K. Yang, J.H. Yan, and C.M. Lin, J. Electron. Mater. 43, 3593 (2014).

    Article  Google Scholar 

  23. Z. Xiang, Y. Wang, P. Ju, and D. Zhang, J. Electron. Mater. 46, 758 (2016).

    Article  Google Scholar 

  24. M. Ramezani and S.M.H. Mashkani, J. Electron. Mater. 46, 1371 (2016).

    Article  Google Scholar 

  25. T.K.O. Vuong, D.L. Tran, T.T. Vu, T.L. Le, H.N. Pham, T.T. Le, H.M. Do, and X.P. Nguyen, J. Electron. Mater. 45, 4010 (2016).

    Article  Google Scholar 

  26. T. Ohtsuka, Int. J. Corr. (2012). https://doi.org/10.1155/2012/915090.

    Google Scholar 

  27. C.-H. Sha and C.C. Lee, J. Electron. Packag. 133, 021005 (2011).

    Article  Google Scholar 

  28. ASTM-D4541, Standard test method for pull-off strength of coatings using portable adhesion testers (2010)

  29. ASTM-D2794, Standard test method for resistance of organic coatings to the effects of rapid deformation (Impact) (2010)

  30. F. Yang, Y. Chu, S. Ma, Y. Zhang, and J. Liu, J. Colloid Interface Sci. 301, 470 (2006).

    Article  Google Scholar 

  31. Y.D. Kim and G. Hong, Korean J. Chem. Eng. 29, 964 (2012).

    Article  Google Scholar 

  32. X. Liu, H. Wu, F. Ren, G. Qiu, and M. Tang, Mater. Chem. Phys. 109, 5 (2008).

    Article  Google Scholar 

  33. I.Y. Jeon, H.J. Choi, L.S. Tan, and J.B. Baek, J. Polym. Sci. 49, 2529 (2011).

    Article  Google Scholar 

  34. W. Su and J.O. Iroh, Electrochim. Acta 44, 2173 (1999).

    Article  Google Scholar 

  35. C. Yang, X. Wang, Y. Wang, and P. Liu, Powder Technol. 217, 134 (2012).

    Article  Google Scholar 

  36. N. Su, Nanoscale Res. Lett. 10, 301 (2015).

    Article  Google Scholar 

  37. S.D.A.S. Ramôa, G.M.O. Barra, C. Merlini, W.H. Schreiner, S. Livi, and B.G. Soares, Appli. Clay Sci. 104, 160 (2015).

    Article  Google Scholar 

  38. S. Konwer, R. Boruah, and S.K. Dolui, J. Electron. Mater. 40, 2248 (2011).

    Article  Google Scholar 

  39. V. Schmidt, C. Giacomelli, and V. Soldi, Polym. Degrad. Stab. 87, 25 (2005).

    Article  Google Scholar 

  40. D. Kowalski, M. Ueda, and T. Ohtsuka, Corr. Sci. 49, 3442 (2007).

    Article  Google Scholar 

  41. A. Reung-u-rai, A. Prom-jun, W. Prissanaroon-ouajai, S. Ouajai, and J. Metals, Mater. Miner. 18, 27 (2008).

    Google Scholar 

  42. T. Liu, N. Liu, S. Zhai, S. Gao, Z. Xiao, Q. An, and D. Yang, J. Alloys Compd. 779, 831 (2019).

    Article  Google Scholar 

  43. H. Veisi, B. Maleki, F.H. Eshbala, H. Veisi, R. Masti, S.S. Ashrafi, and M. Baghayeri, RSC Adv. 4, 30638 (2014).

    Article  Google Scholar 

  44. T.X.H. To, T.A. Nguyen, A.T. Trinh, V.T. Bui, H. Thai, T.M.T. Dinh, and S. Daopiset, J. Coat. Technol. Res. 13, 805 (2016).

    Article  Google Scholar 

  45. S. Abhijit and P.A. Mahanwar, Pigm. Resin Technol. 42, 317 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number “104.06-2014.12”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Dinh Thi Mai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen Thi, T., Dinh Thi Mai, T., Pham Thi, N. et al. Enhanced Anti-Corrosion Protection of Carbon Steel with Silica-Polypyrrole-Dodecyl Sulfate Incorporated into Epoxy Coating. J. Electron. Mater. 48, 3931–3938 (2019). https://doi.org/10.1007/s11664-019-07146-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07146-1

Keywords

Navigation