Journal of Electronic Materials

, Volume 48, Issue 10, pp 6045–6052 | Cite as

Development of Electron Beam Induced Current Characterization of HgCdTe Based Photodiodes

  • A. YècheEmail author
  • F. Boulard
  • O. Gravrand
U.S. Workshop on Physics and Chemistry of II-VI Materials 2018
Part of the following topical collections:
  1. U.S. Workshop on Physics and Chemistry of II-VI Materials 2018


In this paper, HgCdTe photodiodes are characterized by low temperature electron beam induced current (EBIC), with an emphasis on the impact of electron beam energy on the spatial resolution. Monte Carlo simulations are compared to experimental measurements using a comb shaped junction pattern. With a 15 keV electron beam, both converge to a resolution in the 1.3–1.4 μm range. On cross-section samples, lowering the beam energy to 2 keV leads to a 40 nm resolution. In regard to photodiode technologies, namely extrinsic p-on-n and intrinsic n-on-p Hg0.7Cd0.3Te, top view and cross-section typical EBIC characteristic decay lengths are measured. While EBIC exponential decays show no bias voltage dependence suggesting that the system is dominated by diffusion and not drift, the impact of the injection level on transport properties is discussed in regard to the literature.


EBIC spatial resolution injection level HgCdTe cross section 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    O. Gravrand, G. Destefanis, S. Bisotto, N. Baier, J. Rothman, L. Mollard, D. Brellier, L. Rubaldo, A. Kerlain, V. Destefanis, and M. Vuillermet, J. Electron. Mater. 42, 3349 (2013).CrossRefGoogle Scholar
  2. 2.
    J. Boersma, J.J.E. Indenkleef, and H.K. Kuiken, J. Eng. Math. 18, 315 (1984).CrossRefGoogle Scholar
  3. 3.
    F. Berz and H.K. Kuiken, Solid-State Electron. 19, 437 (1976).CrossRefGoogle Scholar
  4. 4.
    V.K.S. Ong, J.C.H. Phang, and D.S.H. Chan, Solid-State Electron. 37, 1 (1994).CrossRefGoogle Scholar
  5. 5.
    D.S.H. Chan, V.K.S. Ong, and J.C.H. Phang, IEEE Trans. Electron Devices 42, 963 (1995).CrossRefGoogle Scholar
  6. 6.
    S.L. Price, in 1984 International Electron Devices Meeting, San Francisco, CA, 1984, pp. 560–563.
  7. 7.
    B.E. Artz, J. Appl. Phys. 57, 2886 (1985).CrossRefGoogle Scholar
  8. 8.
    J. Franc, E. Belas, A.L. Toth, H. Sitter, P. Hlidek, P. Moravec, and P. Höschl, J. Cryst. Growth 197, 593 (1999).CrossRefGoogle Scholar
  9. 9.
    L.O. Bubulac, W.E. Tennant, S.H. Shin, C.C. Wang, M. Lanir, E.R. Gertner, and E.D. Marshall, Jpn. J. Appl. Phys. 19, 495 (1980).CrossRefGoogle Scholar
  10. 10.
    I.G. Gale, J.B. Clegg, S. Mugford, C.D. Maxey, S. Barton, P. Capper, M. Hastings, and C.L. Jones, Semicond. Sci. Technol. 8, S281 (1993).CrossRefGoogle Scholar
  11. 11.
    M.P. Hastings, C.D. Maxey, B.E. Matthews, N.E. Metcalfe, P. Capper, C.L. Jones, and I.G. Gale, J. Cryst. Growth 138, 917 (1994).CrossRefGoogle Scholar
  12. 12.
    R. Haakenaasen, T. Colin, H. Steen, and L. Trosdahl-Iversen, J. Electron. Mater. 29, 849 (2000).CrossRefGoogle Scholar
  13. 13.
    M. Lanir, A.H.B. Vanderwyck, and C.C. Wang, J. Electron. Mater. 8, 175 (1979).CrossRefGoogle Scholar
  14. 14.
    J.H. Tregilgas, J. Vac. Sci. Technol. 21, 208 (1982).CrossRefGoogle Scholar
  15. 15.
    T.M. Moore and H.F. Schaake, J. Vac. Sci. Technol. Vac. Surf. Films 1, 1666 (1983).CrossRefGoogle Scholar
  16. 16.
    C. Blanchard, J.F. Barbot, M. Cahoreau, J.C. Desoyer, D. Le Scoul, and J.L. Dessus, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 47, 15 (1990).CrossRefGoogle Scholar
  17. 17.
    A. Cohn and G. Caledonia, J. Appl. Phys. 41, 3767 (1970).CrossRefGoogle Scholar
  18. 18.
    T.E. Everhart and P.H. Hoff, J. Appl. Phys. 42, 5837 (1971).CrossRefGoogle Scholar
  19. 19.
    K. Kanaya and S. Okayama, J. Phys. Appl. Phys. 5, 43 (1972).CrossRefGoogle Scholar
  20. 20.
    C. Donolato, Solid-State Electron. 28, 1143 (1985).CrossRefGoogle Scholar
  21. 21.
    D.E. Ioannou and C.A. Dimitriadis, IEEE Trans. Electron Devices 29, 445 (1982).CrossRefGoogle Scholar
  22. 22.
    D.B. Wittry and D.F. Kyser, J. Appl. Phys. 38, 375 (1967).CrossRefGoogle Scholar
  23. 23.
    D.F. Kyser and D.B. Wittry, Proc. IEEE 55, 733 (1967).CrossRefGoogle Scholar
  24. 24.
    K.L. Luke, O. von Roos, and L.-J. Cheng, J. Appl. Phys. 57, 1978 (1985).CrossRefGoogle Scholar
  25. 25.
    J. Bonard and J. Ganière, J. Appl. Phys. 79, 6987 (1996).CrossRefGoogle Scholar
  26. 26.
    O. Gravrand, L. Mollard, C. Largeron, N. Baier, E. Deborniol, and P. Chorier, J. Electron. Mater. 38, 1733 (2009).CrossRefGoogle Scholar
  27. 27.
    A. Yèche, F. Boulard, C. Cervera, J.P. Perez, J.B. Rodriguez, P. Christol, and O. Gravrand, Infrared Phys. Technol. 95, 170 (2018). Scholar
  28. 28.
    L. Mollard, G. Destefanis, N. Baier, J. Rothman, P. Ballet, J.P. Zanatta, M. Tchagaspanian, A.M. Papon, G. Bourgeois, J.P. Barnes, C. Pautet, and P. Fougères, J. Electron. Mater. 38, 1805 (2009).CrossRefGoogle Scholar
  29. 29.
    J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, J. Electron. Mater. 41, 2928 (2012).CrossRefGoogle Scholar
  30. 30.
    G.L. Destéfanis, J. Cryst. Growth 86, 700 (1988).CrossRefGoogle Scholar
  31. 31.
    C. Donolato, J. Appl. Phys. 66, 4524 (1989).CrossRefGoogle Scholar
  32. 32.
    M. Nichterwitz and T. Unold, J. Appl. Phys. 114, 134504 (2013).CrossRefGoogle Scholar
  33. 33.
    J.E. Moore, C.A. Affouda, S.I. Maximenko, and P. Jenkins, J. Appl. Phys. 124, 113102 (2018).CrossRefGoogle Scholar
  34. 34.
    M.A. Kinch, F. Aqariden, D. Chandra, P.-K. Liao, H.F. Schaake, and H.D. Shih, J. Electron. Mater. 34, 880 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.CEA, LETIUniversité Grenoble AlpesGrenobleFrance

Personalised recommendations