Skip to main content
Log in

Laser Assisted Doping of Silicon Carbide Thin Films Grown by Pulsed Laser Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cubic silicon carbide (3C-SiC) films were grown by pulsed laser deposition (PLD) on magnesium oxide [MgO (100)] substrates at a substrate temperature of 800°C. Besides, p-type SiC was prepared by laser assisted doping of Al in the PLD grown intrinsic SiC film. The SiC phases, in the grown thin films, were confirmed by x-ray diffraction (XRD), Si–C bond structure is identified by Fourier-transform infrared spectroscopy spectrum analysis. Measurements based on the XRD and Raman scattering techniques confirmed improvement in crystallization of 3C-SiC thin films with the laser assisted doping. The studies on IV characteristics by two probe technique, elemental analysis by energy dispersion spectrum, binding energy by x-ray photoelectron spectroscopy and carrier concentration by Hall effect, ensured Al doping in SiC thin film. From the UV–visible NIR spectroscopic analysis, the optical bandgap of the PLD grown 3C-SiC was obtained. Numerical analysis of temperature and carrier concentration distribution is simulated to understand the mechanism of laser assisted doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Polupan and T.V. Torchynska, Thin Solid Films 518, S208 (2010).

    Article  Google Scholar 

  2. A. Keffous, K. Bourenane, M. Kechouane, N. Gabouze, and T. Kerdja, Vacuum 81, 632 (2007).

    Article  Google Scholar 

  3. N.V. Dyakonova, P.A. Ivanov, V.A. Kozlov, M.E. Levinshtein, J.W. Palmour, S.L. Rumyantsev, and R. Singh, IEEE Trans. Electron Devices 46, 2188 (1999).

    Article  Google Scholar 

  4. J.B. Casady and R.W. Johnson, Solid State Electron. 39, 1409 (1996).

    Article  Google Scholar 

  5. R. Yakimova, R.M. Petoral, G.R. Yazdi, C. Vahlberg, A. Lloyd Spetz, and K. Uvdal, J. Phys. D. Appl. Phys. 40, 6435 (2007).

    Article  Google Scholar 

  6. P. Tanner, A. Iacopi, H.P. Phan, S. Dimitrijev, L. Hold, K. Chaik, G. Walker, D.V. Dao, and N.T. Nguyen, Sci. Rep. 7, 17734 (2017).

    Article  Google Scholar 

  7. A.B.M.A. Ashrafi, Y. Segawa, K. Shin, J. Yoo, and T. Yao, Appl. Surf. Sci. 249, 139 (2005).

    Article  Google Scholar 

  8. H. Yano, T. Hirao, T. Kimoto, H. Matsunami, K. Asano, and Y. Sugawara, IEEE Electron Device Lett. 20, 611 (1999).

    Article  Google Scholar 

  9. Y.I. Alivov, Ü. ÖzgÜr, S. Do, D. Johnstone, and P. Ruterana, Superlattices Microstruct. 38, 439 (2005).

    Article  Google Scholar 

  10. M. Syväjärvi, Q. Ma, V. Jokubavicius, A. Galeckas, J. Sun, X. Liu, M. Jansson, P. Wellmann, M. Linnarsson, P. Runde, B. Andre, A. Thøgersen, S. Diplas, P. Almeida, O. Martin, D. Nilsen, A. Yu, and B.G. Svensson, Sol. Energy Mater. Sol. Cells 145, 104 (2016).

    Article  Google Scholar 

  11. H. Phan, P. Tanner, D.V. Dao, L. Wang, N. Nguyen, Y. Zhu, and S. Dimitrijev, IEEE Electron Device Lett. 35, 399 (2014).

    Article  Google Scholar 

  12. S. Roy, C. Jacob, and S. Basu, Sens. Actuators B Chem. 94, 298 (2003).

    Article  Google Scholar 

  13. J. Zhu, B. Lin, X. Sun, R. Yao, C. Shi, and Z. Fu, Thin Solid Films 478, 218 (2005).

    Article  Google Scholar 

  14. Z. Tian, I.A. Salama, N.R. Quick, and A. Kar, Acta Mater. 53, 2835 (2005).

    Article  Google Scholar 

  15. H. Matsunami, Jpn. J. Appl. Phys. 43, 6835 (2004).

    Article  Google Scholar 

  16. M. Hernandez, J. Venturini, D. Zahorski, J. Boulmer, D. Débarre, G. Kerrien, T. Sarnet, C. Laviron, M.N. Semeria, D. Camel, and J.L. Santailler, Appl. Surf. Sci. 208, 345 (2003).

    Article  Google Scholar 

  17. D. Cammilleri, F. Fossard, D. Débarre, C. Tran Manh, C. Dubois, E. Bustarret, C. Marcenat, P. Achatz, D. Bouchier, and J. Boulmer, Thin Solid Films 517, 75 (2008).

    Article  Google Scholar 

  18. A. Ikeda, R. Sumina, H. Ikenoue, and T. Asano, Jpn. J. Appl. Phys. 55, 1 (2016).

    Article  Google Scholar 

  19. K.S. Kim and G.S. Chung, Sens. Actuators A Phys. 155, 125 (2009).

    Article  Google Scholar 

  20. J. Pezoldt, B. Stottko, G. Kupris, and G. Ecke, Mater. Sci. Eng. B 29, 94 (1995).

    Article  Google Scholar 

  21. M. Vendan, P. Molian, A. Bastawros, and J. Anderegg, Mater. Sci. Semicond. Process. 8, 630 (2005).

    Article  Google Scholar 

  22. S.M. Pelt, J.S. Ramsey, and M.E. Durbin, Thin Solid Films 371, 72 (2000).

    Article  Google Scholar 

  23. Y.S. Katharria, S. Kumar, R.J. Choudhary, R. Prakash, F. Singh, N.P. Lalla, D.M. Phase, and D. Kanjilal, Thin Solid Films 516, 6083 (2008).

    Article  Google Scholar 

  24. M. Tabbal, A. Said, E. Hannoun, and T. Christidis, Appl. Surf. Sci. 253, 7050 (2007).

    Article  Google Scholar 

  25. R. Mahapatra, A.K. Chakraborty, A.B. Horsfall, S. Chattopadhyay, N.G. Wright, K.S. Coleman, and K.S. Coleman, J. Appl. Phys. 102, 024105 (2007).

    Article  Google Scholar 

  26. L.M. Lin and P.T. Lai, J. Appl. Phys. 102, 054515 (2007).

    Article  Google Scholar 

  27. R. Mahapatra, A.K. Chakraborty, N. Poolamai, A. Horsfall, S. Chattopadhyay, N.G. Wright, K.S. Coleman, P.G. Coleman, C.P. Burrows, and K.S. Coleman, J. Vac. Sci. Technol. B 25, 217 (2007).

    Article  Google Scholar 

  28. A. Posadas, F.J. Walker, C.H. Ahn, T.L. Goodrich, Z. Cai, and K.S. Ziemer, Appl. Phys. Lett. 92, 233511 (2008).

    Article  Google Scholar 

  29. P. Prene, P. Belleville, B. Minot, and R. Je, Mater. Sci. Semicond. Process. 7, 249 (2004).

    Article  Google Scholar 

  30. P. Pren and J. Robert, J. Eur. Ceram. Soc. 25, 2795 (2005).

    Article  Google Scholar 

  31. S. Kaneko, T. Nagano, K. Akiyama, T. Ito, M. Yasui, Y. Hirabayashi, H. Funakubo, and M. Yoshimoto, J. Appl. Phys. 107, 073523 (2010).

    Article  Google Scholar 

  32. S.Y. Lee, S.H. Lee, E.J. Nah, S.S. Lee, and Y. Kim, J. Cryst. Growth 236, 635 (2002).

    Article  Google Scholar 

  33. E. Paneerselvam, N.J. Vasa, and M.S.R. Rao, J. Laser Micro Nanoeng. 11, 71 (2016).

    Article  Google Scholar 

  34. V. Bhimasingu, E. Pannirselvam, N.J. Vasa, and I.A. Palani, Int. J. Adv. Manuf. Technol. 84, 769 (2016).

    Google Scholar 

  35. F. Neri, F. Barreca, and S. Trusso, Diam. Relat. Mater. 11, 273 (2002).

    Article  Google Scholar 

  36. R.S. Okojie, M. Xhang, P. Pirouz, S. Tumakha, G. Jessen, and L.J. Brillson, Appl. Phys. Lett. 79, 3056 (2001).

    Article  Google Scholar 

  37. L.J. Brillson, S. Tumakha, G.H. Jessen, R.S. Okojie, M. Zhang, P. Pirouz, L.J. Brillson, S. Tumakha, and G.H. Jessen, Appl. Phys. Lett. 81, 2785 (2002).

    Article  Google Scholar 

  38. R. Yakimova, R. Vasiliauskas, J. Eriksson, and M. Syväjärvi, Mater. Sci. Forum 711, 3 (2012).

    Article  Google Scholar 

  39. S.Z. El Abedin, E.M. Moustafa, R. Hempelmann, H. Natter, and F. Endres, Electrochem. Commun. 7, 1111 (2005).

    Article  Google Scholar 

  40. Z. Tian, N.R. Quick, and A. Kar, Acta Mater. 54, 4273 (2006).

    Article  Google Scholar 

  41. S. Bet, N. Quick, and A. Kar, Acta Mater. 55, 6816 (2007).

    Article  Google Scholar 

  42. L.L. Snead, J. Nucl. Mater. 329, 524 (2004).

    Article  Google Scholar 

  43. D. Marui, A. Ikeda, K. Nishi, H. Ikenoue, and T. Asano, Jpn. J. Appl. Phys. 53, 4 (2014).

    Article  Google Scholar 

  44. Y.E.B. Vidhya and N.J. Vasa, Mater. Res. Express 5, 066410 (2018).

    Article  Google Scholar 

  45. L. Rimai, R. Ager, E.M. Logothetis, W.H. Weber, and J. Hangas, Appl. Phys. Lett. 59, 2266 (1991).

    Article  Google Scholar 

  46. S. Nakashima and H. Harima, Phys. Status Solidi Appl. Res. 162, 39 (1997).

    Article  Google Scholar 

  47. P.M. Lundquist, H.C. Ong, W.P. Lin, R.P.H. Chang, J.B. Ketterson, and G.K. Wong, Appl. Phys. Lett. 67, 2919 (1995).

    Article  Google Scholar 

  48. Y.S. Katharria, S. Kumar, R. Prakash, R.J. Choudhary, F. Singh, D.M. Phase, and D. Kanjilal, J. Non. Cryst. Solids 353, 4660 (2007).

    Article  Google Scholar 

  49. A.A. Lebedev, Semicond. Sci. Technol. 21, 17 (2006).

    Article  Google Scholar 

  50. M. Schlaf, D. Sands, and P.H. Key, Appl. Surf. Sci. 154, 83 (2000).

    Article  Google Scholar 

  51. A.V. Semenov, A.V. Lopin, V.M. Puzikov, O.M. Vovk, I.N. Dmitruk, and V. Romano, Thin Solid Films 520, 6626 (2012).

    Article  Google Scholar 

  52. A. Tabata and M. Mori, Thin Solid Films 516, 626 (2008).

    Article  Google Scholar 

  53. C. Persson, U. Lindefelt, and B.E. Sernelius, J. Appl. Phys. 86, 4419 (1999).

    Article  Google Scholar 

  54. R. Weingärtner, P.J. Wellmann, M. Bickermann, D. Hofmann, T.L. Straubinger, and A. Winnacker, Appl. Phys. Lett. 80, 70 (2002).

    Article  Google Scholar 

  55. G. Leggieri, A. Luches, M. Martino, A. Perrone, R. Alexandrescu, A. Barborica, E. Gyorgy, I.N. Mihailescu, G. Majni, and P. Mengucci, Appl. Surf. Sci. 96, 866 (1996).

    Article  Google Scholar 

  56. Y.X. Wang, J. Wen, Z. Guo, Y.Q. Tang, H.G. Tang, and J.X. Wu, Thin Solid Films 338, 93 (1999).

    Article  Google Scholar 

  57. R.J. Iwanowski, K. Fronc, W. Paszkowicz, and M. Heinonen, J. Alloys Compd. 286, 143 (1999).

    Article  Google Scholar 

  58. S. Trusso, F. Barreca, and F. Neri, J. Appl. Phys. 92, 2485 (2002).

    Article  Google Scholar 

  59. J.P. Huang, L.W. Wang, J. Wen, Y.X. Wang, C.L. Lin, and M. Ostling, Diam. Relat. Mater. 8, 2099 (1999).

    Article  Google Scholar 

  60. J.G. Kim, E.J. Jung, Y. Kim, Y. Makarov, and D.J. Choi, Ceram. Int. 40, 3953 (2014).

    Article  Google Scholar 

  61. S. Oswald and H. Wirth, Surf. Interface Anal. 27, 136 (1999).

    Article  Google Scholar 

  62. T. Muranaka, Y. Kikuchi, T. Yoshizawa, N. Shirakawa, and J. Akimitsu, Sci. Technol. Adv. Mater. 9, 044204 (2009).

    Article  Google Scholar 

  63. R. Vasiliauskas, A. Mekys, P. Malinovskis, S. Juillaguet, M. Syväjärvi, J. Storasta, and R. Yakimova, J. Phys. D Appl. Phys. 45, 225102 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Xavier (Universal Carborundum Limited) for providing SiC powder. Dr. R. Jayaganthan, IIT Roorkee is thanked for providing help in preparation of SPS SiC targets. Authors also gratefully acknowledge the thin film characterisation facility provided by Dr. I. A. Palani at IIT Indore and Dr. A. Subrahmanyam at IIT Madras. Authors are thankful to Hamdan Mohammed Ridwan for his help in the theoretical analysis. Part of this work is supported by DSTJSPS Project (DST/INT/JSPS/P-244/2017). The authors like to acknowledge the help received for material characterization at the Nano Functional Materials Technology Center in IIT Madras established by the Department of Science and Technology (DST) of India [Grant No. SR/NM/NAT-02/2005].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Paneerselvam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paneerselvam, E., Lakshmi Narayanan, V.K., Vasa, N.J. et al. Laser Assisted Doping of Silicon Carbide Thin Films Grown by Pulsed Laser Deposition. J. Electron. Mater. 48, 3468–3478 (2019). https://doi.org/10.1007/s11664-019-07097-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07097-7

Keywords

Navigation