Journal of Electronic Materials

, Volume 48, Issue 5, pp 3330–3335 | Cite as

Thermoelectric Properties of Impurity-Doped Mg2Sn

  • Jun-ichi TaniEmail author
  • Tsutomu Shinagawa
  • Masaya Chigane


The Hall effect and thermoelectric properties of impurity-doped semiconducting Mg2Sn, fabricated using a process combining chemical reduction and spark plasma sintering, were investigated. A small amount of the oxides, hydroxide, or carbonate of IA, IIIA, IB, IIIB, and VB group elements [Al2O3, Bi2O3, Sb2O3, La(OH)3, Li2CO3, Ag2O, CuO, Ga2O3, In2O3, Na2CO3, or Y2O3] were added to improve the thermoelectric performance of Mg2Sn. X-ray diffraction was used for phase identification, and the patterns revealed that the major phase was cubic Mg2Sn, while the minor phases were orthorhombic and trigonal Mg2Sn, MgO, Sn, and intermetallics obtained by the chemical reduction of the additives. The doping of Bi, Sb, Li, Na, and Ga elements into Mg2Sn was found to significantly affect the carrier transport properties. The maximum values of the dimensionless thermoelectric figure-of-merit (ZT) for the p-type Mg2Sn fabricated using Li2CO3 and Na2O3 were 0.25 at 674 K and 0.11 at 577 K, respectively. However, the ZT values for the n-type Mg2Sn fabricated using Bi2O3 and Sb2O3 were 0.057 at 476 K and 0.058 at 574 K, respectively.


Thermoelectric materials semiconductors Mg2Sn spark plasma sintering impurity doping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was partially supported by Grants-in-Aid for Scientific Research (C) (Nos. 15K06520 and 18K04791) from the Ministry of Education, Sports, and Culture, Science and Technology (MEXT), Japan.


  1. 1.
    O.H. Ando Junior, A.L.O. Maran, and N.C. Henao, Renew. Sustain. Energy Rev. 91, 376 (2018).CrossRefGoogle Scholar
  2. 2.
    W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, Appl. Energy 143, 1 (2015).CrossRefGoogle Scholar
  3. 3.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  4. 4.
    R.G. Morris, R.D. Redin, and G.C. Danielson, Phys. Rev. 109, 1909 (1958).CrossRefGoogle Scholar
  5. 5.
    C.B. Vining, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC Press, 1995), p. 277.Google Scholar
  6. 6.
    V.K. Zaitsev, M.I. Fedorov, I.S. Eremin, and E.A. Gurieva, Thermoelectrics Handbook Macro to Nano, ed. D.M. Rowe Chapter 29, (Boca Raton: CRC Press, 2006), Google Scholar
  7. 7.
    J. de Boor, T. Dasgupta, and E. Müller, Materials Aspect of Thermoelectricity, ed. C. Uher (Boca Raton: CRC Press, 2016), p. 159.CrossRefGoogle Scholar
  8. 8.
    J. Tani and H. Kido, Physica B 364, 218 (2005).CrossRefGoogle Scholar
  9. 9.
    J. Zhao, Z. Liu, J. Reid, K. Takarabe, T. Iida, B. Wang, U. Yoshiya, and J.S. Tse, J. Mater. Chem. A 3, 19774 (2015).CrossRefGoogle Scholar
  10. 10.
    G. Kim, J. Kim, H. Lee, S. Cho, I. Lyo, S. Noh, B.-W. Kim, S.W. Kim, K.H. Lee, and W. Lee, Scr. Mater. 116, 11 (2016).CrossRefGoogle Scholar
  11. 11.
    M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, and N. Hamada, J. Appl. Phys. 104, 013703 (2008).CrossRefGoogle Scholar
  12. 12.
    J. Tani and H. Kido, Intermetallics 32, 72 (2013).CrossRefGoogle Scholar
  13. 13.
    H.Y. Chen and N. Savvides, J. Electron. Mater. 38, 1056 (2009).CrossRefGoogle Scholar
  14. 14.
    H.Y. Chen and N. Savvides, J. Electron. Mater. 39, 1792 (2010).CrossRefGoogle Scholar
  15. 15.
    H.Y. Chen and N. Savvides, J. Cryst. Growth 312, 2328 (2010).CrossRefGoogle Scholar
  16. 16.
    H.Y. Chen, N. Savvides, T. Dasgupta, C. Stiewe, and E. Mueller, Phys. Status Solidi A 207, 2523 (2010).CrossRefGoogle Scholar
  17. 17.
    T.-H. An, S.-M. Choi, I.-H. Kim, S.-U. Kim, W.-S. Seo, J.-Y. Kim, and C. Park, Renew. Energy 42, 23 (2012).CrossRefGoogle Scholar
  18. 18.
    S.-M. Choi, T.H. An, W.-S. Seo, C. Park, I.-H. Kim, and S.-U. Kim, J. Electron. Mater. 41, 1071 (2012).CrossRefGoogle Scholar
  19. 19.
    X. Li, S. Li, S. Feng, H. Zhong, and H. Fu, J. Electron. Mater. 45, 2895 (2016).CrossRefGoogle Scholar
  20. 20.
    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).CrossRefGoogle Scholar
  21. 21.
    M.B.A. Bashir, S. Mohd Said, M.F.M. Sabri, D.A. Shnawah, and M.H. Elsheikh, Renew. Sustain. Energy Rev. 37, 569 (2014).CrossRefGoogle Scholar
  22. 22.
    W. Liu, H.S. Kim, S. Chen, Q. Jie, B. Lv, M. Yao, Z. Ren, C.P. Opeil, S. Wilson, C.W. Chu, and Z. Ren, Proc. Natl. Acad. Sci. U. S. A. 112, 3269 (2015).CrossRefGoogle Scholar
  23. 23.
    W. Liu, J. Zhou, Q. Jie, Y. Li, H.S. Kim, J. Bao, G. Chen, and Z. Ren, Energy Environ. Sci. 9, 530 (2016).CrossRefGoogle Scholar
  24. 24.
    J. Tani and H. Kido, Physica B 407, 3493 (2012).CrossRefGoogle Scholar
  25. 25.
    Y.R. Jin, Z.Z. Feng, L.Y. Ye, Y.L. Yan, and Y.X. Wang, RSC Adv. 6, 48728 (2016).CrossRefGoogle Scholar
  26. 26.
    Y. Isoda, S. Tada, T. Nagai, H. Fujiu, and Y. Shinohara, J. Electron. Mater. 39, 1531 (2010).CrossRefGoogle Scholar
  27. 27.
    X. Liu, Y. Wang, J.O. Sofo, T. Zhu, L.-Q. Chen, and X. Zhao, J. Mater. Res. 30, 2578 (2015).CrossRefGoogle Scholar
  28. 28.
    G.H. Grosch and K.-J. Range, J. Alloys Compd. 235, 250 (1996).CrossRefGoogle Scholar
  29. 29.
    P. Cannon and E.T. Conlin, Science 145, 487 (1964).CrossRefGoogle Scholar
  30. 30.
    K.-J. Range, G.H. Grosch, and M. Andratschke, J. Alloys Compd. 244, 170 (1996).CrossRefGoogle Scholar
  31. 31.
    T.I. Dyuzheva, N.A. Bendeliani, L.N. Dzhavadov, T.N. Kolobyanina, and N.A. Nikolaev, J. Alloys Compd. 223, 74 (1995).CrossRefGoogle Scholar
  32. 32.
    R. Suganuma, J. Phys. Soc. Jpn. 14, 685 (1959).CrossRefGoogle Scholar
  33. 33.
    H. Le-Quoc, A. Lacoste, E.K. Hlil, A. Bès, T.T. Vinh, D. Fruchart, and N. Skryabina, J. Alloys Compd. 509, 9906 (2011).CrossRefGoogle Scholar
  34. 34.
    C.R. Clark, C. Wright, C. Suryanarayana, E.G. Baburaj, and F.H. Froes, Mater. Lett. 33, 71 (1997).CrossRefGoogle Scholar
  35. 35.
    G. Urretavizcaya and G.O. Meyer, J. Alloys Compd. 339, 211 (2002).CrossRefGoogle Scholar
  36. 36.
    B. Sahoo, W.A. Adeagbo, F. Stromberg, W. Keune, E. Schuster, R. Peters, P. Entel, S. Lüttjohann, A. Gondorf, W. Sturhahn, J. Zhao, T.S. Toellner, and E.E. Alp, Phase Transit. 79, 839 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Jun-ichi Tani
    • 1
    Email author
  • Tsutomu Shinagawa
    • 1
  • Masaya Chigane
    • 1
  1. 1.Electronic Materials Research Division, Morinomiya CenterOsaka Research Institute of Industrial Science and TechnologyOsakaJapan

Personalised recommendations